| 32 |  | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 |  | * research, please cite the appropriate papers when you publish your | 
| 34 |  | * work.  Good starting points are: | 
| 35 | < | * | 
| 36 | < | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | < | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | < | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 | < | * [4]  Vardeman & Gezelter, in progress (2009). | 
| 35 | > | * | 
| 36 | > | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | > | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | > | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 | > | * [4]  Vardeman & Gezelter, in progress (2009). | 
| 40 |  | */ | 
| 41 | < |  | 
| 41 | > |  | 
| 42 |  | #include <math.h> | 
| 43 |  | #include <iostream> | 
| 44 |  |  | 
| 57 |  | SimInfo::MoleculeIterator miter; | 
| 58 |  | std::vector<StuntDouble*>::iterator iiter; | 
| 59 |  | Molecule* mol; | 
| 60 | < | StuntDouble* integrableObject; | 
| 60 | > | StuntDouble* integrableObject; | 
| 61 |  | Vector3d vel; | 
| 62 |  | Vector3d angMom; | 
| 63 |  | Mat3x3d I; | 
| 67 |  | RealType mass; | 
| 68 |  | RealType kinetic = 0.0; | 
| 69 |  | RealType kinetic_global = 0.0; | 
| 70 | < |  | 
| 70 | > |  | 
| 71 |  | for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) { | 
| 72 | < | for (integrableObject = mol->beginIntegrableObject(iiter); integrableObject != NULL; | 
| 73 | < | integrableObject = mol->nextIntegrableObject(iiter)) { | 
| 74 | < |  | 
| 75 | < | mass = integrableObject->getMass(); | 
| 76 | < | vel = integrableObject->getVel(); | 
| 77 | < |  | 
| 78 | < | kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]); | 
| 79 | < |  | 
| 80 | < | if (integrableObject->isDirectional()) { | 
| 81 | < | angMom = integrableObject->getJ(); | 
| 82 | < | I = integrableObject->getI(); | 
| 72 | > | for (integrableObject = mol->beginIntegrableObject(iiter); integrableObject != NULL; | 
| 73 | > | integrableObject = mol->nextIntegrableObject(iiter)) { | 
| 74 |  |  | 
| 75 | < | if (integrableObject->isLinear()) { | 
| 76 | < | i = integrableObject->linearAxis(); | 
| 77 | < | j = (i + 1) % 3; | 
| 78 | < | k = (i + 2) % 3; | 
| 79 | < | kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k); | 
| 80 | < | } else { | 
| 81 | < | kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1) | 
| 82 | < | + angMom[2]*angMom[2]/I(2, 2); | 
| 83 | < | } | 
| 84 | < | } | 
| 85 | < |  | 
| 75 | > | mass = integrableObject->getMass(); | 
| 76 | > | vel = integrableObject->getVel(); | 
| 77 | > |  | 
| 78 | > | kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]); | 
| 79 | > |  | 
| 80 | > | if (integrableObject->isDirectional()) { | 
| 81 | > | angMom = integrableObject->getJ(); | 
| 82 | > | I = integrableObject->getI(); | 
| 83 | > |  | 
| 84 | > | if (integrableObject->isLinear()) { | 
| 85 | > | i = integrableObject->linearAxis(); | 
| 86 | > | j = (i + 1) % 3; | 
| 87 | > | k = (i + 2) % 3; | 
| 88 | > | kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k); | 
| 89 | > | } else { | 
| 90 | > | kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1) | 
| 91 | > | + angMom[2]*angMom[2]/I(2, 2); | 
| 92 | > | } | 
| 93 | > | } | 
| 94 | > |  | 
| 95 |  | } | 
| 96 |  | } | 
| 97 | < |  | 
| 97 | > |  | 
| 98 |  | #ifdef IS_MPI | 
| 99 |  |  | 
| 100 |  | MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_REALTYPE, MPI_SUM, | 
| 138 |  | } | 
| 139 |  |  | 
| 140 |  | RealType Thermo::getTemperature() { | 
| 141 | < |  | 
| 141 | > |  | 
| 142 |  | RealType temperature = ( 2.0 * this->getKinetic() ) / (info_->getNdf()* PhysicalConstants::kb ); | 
| 143 |  | return temperature; | 
| 144 |  | } | 
| 145 |  |  | 
| 146 | < | RealType Thermo::getVolume() { | 
| 146 | > | RealType Thermo::getVolume() { | 
| 147 |  | Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 148 |  | return curSnapshot->getVolume(); | 
| 149 |  | } | 
| 167 |  |  | 
| 168 |  | // Relies on the calculation of the full molecular pressure tensor | 
| 169 |  |  | 
| 170 | < |  | 
| 170 | > |  | 
| 171 |  | Mat3x3d tensor; | 
| 172 |  | RealType pressure; | 
| 173 |  |  | 
| 189 |  | SimInfo::MoleculeIterator i; | 
| 190 |  | std::vector<StuntDouble*>::iterator j; | 
| 191 |  | Molecule* mol; | 
| 192 | < | StuntDouble* integrableObject; | 
| 192 | > | StuntDouble* integrableObject; | 
| 193 |  | for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { | 
| 194 | < | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 195 | < | integrableObject = mol->nextIntegrableObject(j)) { | 
| 194 | > | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 195 | > | integrableObject = mol->nextIntegrableObject(j)) { | 
| 196 |  |  | 
| 197 | < | RealType mass = integrableObject->getMass(); | 
| 198 | < | Vector3d vcom = integrableObject->getVel(); | 
| 199 | < | p_local += mass * outProduct(vcom, vcom); | 
| 197 | > | RealType mass = integrableObject->getMass(); | 
| 198 | > | Vector3d vcom = integrableObject->getVel(); | 
| 199 | > | p_local += mass * outProduct(vcom, vcom); | 
| 200 |  | } | 
| 201 |  | } | 
| 202 | < |  | 
| 202 | > |  | 
| 203 |  | #ifdef IS_MPI | 
| 204 |  | MPI_Allreduce(p_local.getArrayPointer(), p_global.getArrayPointer(), 9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 205 |  | #else | 
| 211 |  | Mat3x3d tau = curSnapshot->statData.getTau(); | 
| 212 |  |  | 
| 213 |  | pressureTensor =  (p_global + PhysicalConstants::energyConvert* tau)/volume; | 
| 214 | < |  | 
| 214 | > |  | 
| 215 |  | return pressureTensor; | 
| 216 |  | } | 
| 217 |  |  | 
| 219 |  | void Thermo::saveStat(){ | 
| 220 |  | Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 221 |  | Stats& stat = currSnapshot->statData; | 
| 222 | < |  | 
| 222 | > |  | 
| 223 |  | stat[Stats::KINETIC_ENERGY] = getKinetic(); | 
| 224 |  | stat[Stats::POTENTIAL_ENERGY] = getPotential(); | 
| 225 |  | stat[Stats::TOTAL_ENERGY] = stat[Stats::KINETIC_ENERGY]  + stat[Stats::POTENTIAL_ENERGY] ; | 
| 226 |  | stat[Stats::TEMPERATURE] = getTemperature(); | 
| 227 |  | stat[Stats::PRESSURE] = getPressure(); | 
| 228 | < | stat[Stats::VOLUME] = getVolume(); | 
| 228 | > | stat[Stats::VOLUME] = getVolume(); | 
| 229 |  |  | 
| 230 |  | Mat3x3d tensor =getPressureTensor(); | 
| 231 | < | stat[Stats::PRESSURE_TENSOR_XX] = tensor(0, 0); | 
| 232 | < | stat[Stats::PRESSURE_TENSOR_XY] = tensor(0, 1); | 
| 233 | < | stat[Stats::PRESSURE_TENSOR_XZ] = tensor(0, 2); | 
| 234 | < | stat[Stats::PRESSURE_TENSOR_YX] = tensor(1, 0); | 
| 235 | < | stat[Stats::PRESSURE_TENSOR_YY] = tensor(1, 1); | 
| 236 | < | stat[Stats::PRESSURE_TENSOR_YZ] = tensor(1, 2); | 
| 237 | < | stat[Stats::PRESSURE_TENSOR_ZX] = tensor(2, 0); | 
| 238 | < | stat[Stats::PRESSURE_TENSOR_ZY] = tensor(2, 1); | 
| 239 | < | stat[Stats::PRESSURE_TENSOR_ZZ] = tensor(2, 2); | 
| 231 | > | stat[Stats::PRESSURE_TENSOR_XX] = tensor(0, 0); | 
| 232 | > | stat[Stats::PRESSURE_TENSOR_XY] = tensor(0, 1); | 
| 233 | > | stat[Stats::PRESSURE_TENSOR_XZ] = tensor(0, 2); | 
| 234 | > | stat[Stats::PRESSURE_TENSOR_YX] = tensor(1, 0); | 
| 235 | > | stat[Stats::PRESSURE_TENSOR_YY] = tensor(1, 1); | 
| 236 | > | stat[Stats::PRESSURE_TENSOR_YZ] = tensor(1, 2); | 
| 237 | > | stat[Stats::PRESSURE_TENSOR_ZX] = tensor(2, 0); | 
| 238 | > | stat[Stats::PRESSURE_TENSOR_ZY] = tensor(2, 1); | 
| 239 | > | stat[Stats::PRESSURE_TENSOR_ZZ] = tensor(2, 2); | 
| 240 |  | Vector3d GKappa_t = getThermalHelfand(); | 
| 241 |  | stat[Stats::THERMAL_HELFANDMOMENT_X] = GKappa_t.x(); | 
| 242 |  | stat[Stats::THERMAL_HELFANDMOMENT_Y] = GKappa_t.y(); | 
| 244 |  |  | 
| 245 |  | Globals* simParams = info_->getSimParams(); | 
| 246 |  |  | 
| 247 | < | if (simParams->haveTaggedAtomPair() && | 
| 247 | > | if (simParams->haveTaggedAtomPair() && | 
| 248 |  | simParams->havePrintTaggedPairDistance()) { | 
| 249 |  | if ( simParams->getPrintTaggedPairDistance()) { | 
| 250 | < |  | 
| 250 | > |  | 
| 251 |  | std::pair<int, int> tap = simParams->getTaggedAtomPair(); | 
| 252 |  | Vector3d pos1, pos2, rab; | 
| 253 |  |  | 
| 254 | < | #ifdef IS_MPI | 
| 254 | > | #ifdef IS_MPI | 
| 255 |  | std::cerr << "tap = " << tap.first << "  " << tap.second << std::endl; | 
| 256 |  |  | 
| 257 | < | int mol1 = info_->getGlobalMolMembership(tap.first); | 
| 258 | < | int mol2 = info_->getGlobalMolMembership(tap.second); | 
| 257 | > | int mol1 = info_->getGlobalMolMembership(tap.first); | 
| 258 | > | int mol2 = info_->getGlobalMolMembership(tap.second); | 
| 259 |  | std::cerr << "mols = " << mol1 << " " << mol2 << std::endl; | 
| 260 |  |  | 
| 261 |  | int proc1 = info_->getMolToProc(mol1); | 
| 263 |  |  | 
| 264 |  | std::cerr << " procs = " << proc1 << " " <<proc2 <<std::endl; | 
| 265 |  |  | 
| 266 | < | RealType data[3]; | 
| 266 | > | RealType data[3]; | 
| 267 |  | if (proc1 == worldRank) { | 
| 268 |  | StuntDouble* sd1 = info_->getIOIndexToIntegrableObject(tap.first); | 
| 269 |  | std::cerr << " on proc " << proc1 << ", sd1 has global index= " << sd1->getGlobalIndex() << std::endl; | 
| 270 |  | pos1 = sd1->getPos(); | 
| 271 |  | data[0] = pos1.x(); | 
| 272 |  | data[1] = pos1.y(); | 
| 273 | < | data[2] = pos1.z(); | 
| 273 | > | data[2] = pos1.z(); | 
| 274 |  | MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD); | 
| 275 |  | } else { | 
| 276 |  | MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD); | 
| 284 |  | pos2 = sd2->getPos(); | 
| 285 |  | data[0] = pos2.x(); | 
| 286 |  | data[1] = pos2.y(); | 
| 287 | < | data[2] = pos2.z(); | 
| 287 | > | data[2] = pos2.z(); | 
| 288 |  | MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD); | 
| 289 |  | } else { | 
| 290 |  | MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD); | 
| 295 |  | StuntDouble* at2 = info_->getIOIndexToIntegrableObject(tap.second); | 
| 296 |  | pos1 = at1->getPos(); | 
| 297 |  | pos2 = at2->getPos(); | 
| 298 | < | #endif | 
| 298 | > | #endif | 
| 299 |  | rab = pos2 - pos1; | 
| 300 |  | currSnapshot->wrapVector(rab); | 
| 301 |  | stat[Stats::TAGGED_PAIR_DISTANCE] =  rab.length(); | 
| 302 |  | } | 
| 303 |  | } | 
| 304 | < |  | 
| 304 | > |  | 
| 305 |  | /**@todo need refactorying*/ | 
| 306 |  | //Conserved Quantity is set by integrator and time is set by setTime | 
| 307 | < |  | 
| 307 | > |  | 
| 308 |  | } | 
| 309 |  |  | 
| 310 |  |  | 
| 435 |  | RealType AvgE_a_ = 0; | 
| 436 |  | Vector3d GKappa_t = V3Zero; | 
| 437 |  | Vector3d ThermalHelfandMoment; | 
| 438 | < |  | 
| 438 | > |  | 
| 439 |  | for (mol = info_->beginMolecule(miter); mol != NULL; | 
| 440 |  | mol = info_->nextMolecule(miter)) { | 
| 441 |  |  | 
| 444 |  |  | 
| 445 |  | mass = atom->getMass(); | 
| 446 |  | velocity = atom->getVel(); | 
| 447 | < | kinetic = mass * (velocity[0]*velocity[0] + velocity[1]*velocity[1] + | 
| 447 | > | kinetic = mass * (velocity[0]*velocity[0] + velocity[1]*velocity[1] + | 
| 448 |  | velocity[2]*velocity[2]) / PhysicalConstants::energyConvert; | 
| 449 |  | potential =  atom->getParticlePot(); | 
| 450 |  | eatom += (kinetic + potential)/2.0; | 
| 453 |  |  | 
| 454 |  | int natoms = info_->getNGlobalAtoms(); | 
| 455 |  | #ifdef IS_MPI | 
| 456 | < |  | 
| 456 | > |  | 
| 457 |  | MPI_Allreduce(&eatom, &AvgE_a_, 1, MPI_REALTYPE, MPI_SUM, | 
| 458 |  | MPI_COMM_WORLD); | 
| 459 | < | #else | 
| 459 | > | #else | 
| 460 |  | AvgE_a_ = eatom; | 
| 461 |  | #endif | 
| 462 |  | AvgE_a_ = AvgE_a_/RealType(natoms); | 
| 463 | < |  | 
| 463 | > |  | 
| 464 |  | for (mol = info_->beginMolecule(miter); mol != NULL; | 
| 465 |  | mol = info_->nextMolecule(miter)) { | 
| 466 | < |  | 
| 466 | > |  | 
| 467 |  | for (atom = mol->beginAtom(aiter); atom != NULL; | 
| 468 |  | atom = mol->nextAtom(aiter)) { | 
| 469 | < |  | 
| 469 | > |  | 
| 470 |  | /* We think that x_a is relative to the total box and should be a wrapped coordinate */ | 
| 471 |  | x_a = atom->getPos(); | 
| 472 |  | currSnapshot->wrapVector(x_a); | 
| 473 |  | potential =  atom->getParticlePot(); | 
| 474 | < |  | 
| 475 | < | GKappa_t += x_a*(potential-AvgE_a_); | 
| 474 | > | velocity = atom->getVel(); | 
| 475 | > | kinetic = mass * (velocity[0]*velocity[0] + velocity[1]*velocity[1] + | 
| 476 | > | velocity[2]*velocity[2]) / PhysicalConstants::energyConvert; | 
| 477 | > | eatom += (kinetic + potential)/2.0 | 
| 478 | > | GKappa_t += x_a*(eatom-AvgE_a_); | 
| 479 |  | } | 
| 480 |  | } | 
| 481 |  | #ifdef IS_MPI | 
| 482 |  | MPI_Allreduce(GKappa_t.getArrayPointer(), ThermalHelfandMoment.getArrayPointer(), 3, | 
| 483 |  | MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 484 | < | #else | 
| 484 | > | #else | 
| 485 |  | ThermalHelfandMoment = GKappa_t; | 
| 486 | < | #endif | 
| 486 | > | #endif | 
| 487 |  | return ThermalHelfandMoment; | 
| 488 | < |  | 
| 488 | > |  | 
| 489 |  | } | 
| 490 |  |  | 
| 491 |  |  |