| 32 |  | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 |  | * research, please cite the appropriate papers when you publish your | 
| 34 |  | * work.  Good starting points are: | 
| 35 | < | * | 
| 36 | < | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | < | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | < | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 | < | * [4]  Vardeman & Gezelter, in progress (2009). | 
| 35 | > | * | 
| 36 | > | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | > | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | > | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 | > | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | > | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 |  | */ | 
| 42 | < |  | 
| 42 | > |  | 
| 43 |  | #include <math.h> | 
| 44 |  | #include <iostream> | 
| 45 |  |  | 
| 51 |  | #include "primitives/Molecule.hpp" | 
| 52 |  | #include "utils/simError.h" | 
| 53 |  | #include "utils/PhysicalConstants.hpp" | 
| 54 | + | #include "types/FixedChargeAdapter.hpp" | 
| 55 | + | #include "types/FluctuatingChargeAdapter.hpp" | 
| 56 | + | #include "types/MultipoleAdapter.hpp" | 
| 57 | + | #ifdef HAVE_QHULL | 
| 58 | + | #include "math/ConvexHull.hpp" | 
| 59 | + | #include "math/AlphaHull.hpp" | 
| 60 | + | #endif | 
| 61 |  |  | 
| 62 | + | using namespace std; | 
| 63 |  | namespace OpenMD { | 
| 64 |  |  | 
| 65 | < | RealType Thermo::getKinetic() { | 
| 66 | < | SimInfo::MoleculeIterator miter; | 
| 58 | < | std::vector<StuntDouble*>::iterator iiter; | 
| 59 | < | Molecule* mol; | 
| 60 | < | StuntDouble* integrableObject; | 
| 61 | < | Vector3d vel; | 
| 62 | < | Vector3d angMom; | 
| 63 | < | Mat3x3d I; | 
| 64 | < | int i; | 
| 65 | < | int j; | 
| 66 | < | int k; | 
| 67 | < | RealType mass; | 
| 68 | < | RealType kinetic = 0.0; | 
| 69 | < | RealType kinetic_global = 0.0; | 
| 65 | > | RealType Thermo::getTranslationalKinetic() { | 
| 66 | > | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 67 |  |  | 
| 68 | < | for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) { | 
| 69 | < | for (integrableObject = mol->beginIntegrableObject(iiter); integrableObject != NULL; | 
| 70 | < | integrableObject = mol->nextIntegrableObject(iiter)) { | 
| 71 | < |  | 
| 72 | < | mass = integrableObject->getMass(); | 
| 73 | < | vel = integrableObject->getVel(); | 
| 74 | < |  | 
| 75 | < | kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]); | 
| 76 | < |  | 
| 77 | < | if (integrableObject->isDirectional()) { | 
| 78 | < | angMom = integrableObject->getJ(); | 
| 79 | < | I = integrableObject->getI(); | 
| 80 | < |  | 
| 81 | < | if (integrableObject->isLinear()) { | 
| 82 | < | i = integrableObject->linearAxis(); | 
| 83 | < | j = (i + 1) % 3; | 
| 84 | < | k = (i + 2) % 3; | 
| 85 | < | kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k); | 
| 86 | < | } else { | 
| 87 | < | kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1) | 
| 88 | < | + angMom[2]*angMom[2]/I(2, 2); | 
| 68 | > | if (!snap->hasTranslationalKineticEnergy) { | 
| 69 | > | SimInfo::MoleculeIterator miter; | 
| 70 | > | vector<StuntDouble*>::iterator iiter; | 
| 71 | > | Molecule* mol; | 
| 72 | > | StuntDouble* sd; | 
| 73 | > | Vector3d vel; | 
| 74 | > | RealType mass; | 
| 75 | > | RealType kinetic(0.0); | 
| 76 | > |  | 
| 77 | > | for (mol = info_->beginMolecule(miter); mol != NULL; | 
| 78 | > | mol = info_->nextMolecule(miter)) { | 
| 79 | > |  | 
| 80 | > | for (sd = mol->beginIntegrableObject(iiter); sd != NULL; | 
| 81 | > | sd = mol->nextIntegrableObject(iiter)) { | 
| 82 | > |  | 
| 83 | > | mass = sd->getMass(); | 
| 84 | > | vel = sd->getVel(); | 
| 85 | > |  | 
| 86 | > | kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]); | 
| 87 | > |  | 
| 88 | > | } | 
| 89 | > | } | 
| 90 | > |  | 
| 91 | > | #ifdef IS_MPI | 
| 92 | > | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE, | 
| 93 | > | MPI::SUM); | 
| 94 | > | #endif | 
| 95 | > |  | 
| 96 | > | kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert; | 
| 97 | > |  | 
| 98 | > |  | 
| 99 | > | snap->setTranslationalKineticEnergy(kinetic); | 
| 100 |  | } | 
| 101 | + | return snap->getTranslationalKineticEnergy(); | 
| 102 |  | } | 
| 103 |  |  | 
| 104 | + | RealType Thermo::getRotationalKinetic() { | 
| 105 | + | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 106 | + |  | 
| 107 | + | if (!snap->hasRotationalKineticEnergy) { | 
| 108 | + | SimInfo::MoleculeIterator miter; | 
| 109 | + | vector<StuntDouble*>::iterator iiter; | 
| 110 | + | Molecule* mol; | 
| 111 | + | StuntDouble* sd; | 
| 112 | + | Vector3d angMom; | 
| 113 | + | Mat3x3d I; | 
| 114 | + | int i, j, k; | 
| 115 | + | RealType kinetic(0.0); | 
| 116 | + |  | 
| 117 | + | for (mol = info_->beginMolecule(miter); mol != NULL; | 
| 118 | + | mol = info_->nextMolecule(miter)) { | 
| 119 | + |  | 
| 120 | + | for (sd = mol->beginIntegrableObject(iiter); sd != NULL; | 
| 121 | + | sd = mol->nextIntegrableObject(iiter)) { | 
| 122 | + |  | 
| 123 | + | if (sd->isDirectional()) { | 
| 124 | + | angMom = sd->getJ(); | 
| 125 | + | I = sd->getI(); | 
| 126 | + |  | 
| 127 | + | if (sd->isLinear()) { | 
| 128 | + | i = sd->linearAxis(); | 
| 129 | + | j = (i + 1) % 3; | 
| 130 | + | k = (i + 2) % 3; | 
| 131 | + | kinetic += angMom[j] * angMom[j] / I(j, j) | 
| 132 | + | + angMom[k] * angMom[k] / I(k, k); | 
| 133 | + | } else { | 
| 134 | + | kinetic += angMom[0]*angMom[0]/I(0, 0) | 
| 135 | + | + angMom[1]*angMom[1]/I(1, 1) | 
| 136 | + | + angMom[2]*angMom[2]/I(2, 2); | 
| 137 | + | } | 
| 138 | + | } | 
| 139 | + | } | 
| 140 |  | } | 
| 141 | + |  | 
| 142 | + | #ifdef IS_MPI | 
| 143 | + | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE, | 
| 144 | + | MPI::SUM); | 
| 145 | + | #endif | 
| 146 | + |  | 
| 147 | + | kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert; | 
| 148 | + |  | 
| 149 | + | snap->setRotationalKineticEnergy(kinetic); | 
| 150 |  | } | 
| 151 | + | return snap->getRotationalKineticEnergy(); | 
| 152 | + | } | 
| 153 |  |  | 
| 154 | < | #ifdef IS_MPI | 
| 154 | > |  | 
| 155 |  |  | 
| 156 | < | MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_REALTYPE, MPI_SUM, | 
| 157 | < | MPI_COMM_WORLD); | 
| 102 | < | kinetic = kinetic_global; | 
| 156 | > | RealType Thermo::getKinetic() { | 
| 157 | > | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 158 |  |  | 
| 159 | < | #endif //is_mpi | 
| 160 | < |  | 
| 161 | < | kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert; | 
| 162 | < |  | 
| 163 | < | return kinetic; | 
| 159 | > | if (!snap->hasKineticEnergy) { | 
| 160 | > | RealType ke = getTranslationalKinetic() + getRotationalKinetic(); | 
| 161 | > | snap->setKineticEnergy(ke); | 
| 162 | > | } | 
| 163 | > | return snap->getKineticEnergy(); | 
| 164 |  | } | 
| 165 |  |  | 
| 166 |  | RealType Thermo::getPotential() { | 
| 112 | – | RealType potential = 0.0; | 
| 113 | – | Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 114 | – | RealType shortRangePot_local =  curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] ; | 
| 167 |  |  | 
| 168 | < | // Get total potential for entire system from MPI. | 
| 168 | > | // ForceManager computes the potential and stores it in the | 
| 169 | > | // Snapshot.  All we have to do is report it. | 
| 170 |  |  | 
| 171 | < | #ifdef IS_MPI | 
| 171 | > | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 172 | > | return snap->getPotentialEnergy(); | 
| 173 | > | } | 
| 174 |  |  | 
| 175 | < | MPI_Allreduce(&shortRangePot_local, &potential, 1, MPI_REALTYPE, MPI_SUM, | 
| 121 | < | MPI_COMM_WORLD); | 
| 122 | < | potential += curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL]; | 
| 175 | > | RealType Thermo::getTotalEnergy() { | 
| 176 |  |  | 
| 177 | < | #else | 
| 177 | > | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 178 |  |  | 
| 179 | < | potential = shortRangePot_local + curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL]; | 
| 179 | > | if (!snap->hasTotalEnergy) { | 
| 180 | > | snap->setTotalEnergy(this->getKinetic() + this->getPotential()); | 
| 181 | > | } | 
| 182 |  |  | 
| 183 | < | #endif // is_mpi | 
| 129 | < |  | 
| 130 | < | return potential; | 
| 183 | > | return snap->getTotalEnergy(); | 
| 184 |  | } | 
| 185 |  |  | 
| 186 | < | RealType Thermo::getTotalE() { | 
| 134 | < | RealType total; | 
| 186 | > | RealType Thermo::getTemperature() { | 
| 187 |  |  | 
| 188 | < | total = this->getKinetic() + this->getPotential(); | 
| 137 | < | return total; | 
| 138 | < | } | 
| 188 | > | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 189 |  |  | 
| 190 | < | RealType Thermo::getTemperature() { | 
| 190 | > | if (!snap->hasTemperature) { | 
| 191 |  |  | 
| 192 | < | RealType temperature = ( 2.0 * this->getKinetic() ) / (info_->getNdf()* PhysicalConstants::kb ); | 
| 193 | < | return temperature; | 
| 144 | < | } | 
| 192 | > | RealType temperature = ( 2.0 * this->getKinetic() ) | 
| 193 | > | / (info_->getNdf()* PhysicalConstants::kb ); | 
| 194 |  |  | 
| 195 | < | RealType Thermo::getVolume() { | 
| 196 | < | Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 197 | < | return curSnapshot->getVolume(); | 
| 195 | > | snap->setTemperature(temperature); | 
| 196 | > | } | 
| 197 | > |  | 
| 198 | > | return snap->getTemperature(); | 
| 199 |  | } | 
| 200 |  |  | 
| 201 | < | RealType Thermo::getPressure() { | 
| 201 | > | RealType Thermo::getElectronicTemperature() { | 
| 202 | > | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 203 |  |  | 
| 204 | < | // Relies on the calculation of the full molecular pressure tensor | 
| 204 | > | if (!snap->hasElectronicTemperature) { | 
| 205 | > |  | 
| 206 | > | SimInfo::MoleculeIterator miter; | 
| 207 | > | vector<Atom*>::iterator iiter; | 
| 208 | > | Molecule* mol; | 
| 209 | > | Atom* atom; | 
| 210 | > | RealType cvel; | 
| 211 | > | RealType cmass; | 
| 212 | > | RealType kinetic(0.0); | 
| 213 | > | RealType eTemp; | 
| 214 | > |  | 
| 215 | > | for (mol = info_->beginMolecule(miter); mol != NULL; | 
| 216 | > | mol = info_->nextMolecule(miter)) { | 
| 217 | > |  | 
| 218 | > | for (atom = mol->beginFluctuatingCharge(iiter); atom != NULL; | 
| 219 | > | atom = mol->nextFluctuatingCharge(iiter)) { | 
| 220 | > |  | 
| 221 | > | cmass = atom->getChargeMass(); | 
| 222 | > | cvel = atom->getFlucQVel(); | 
| 223 | > |  | 
| 224 | > | kinetic += cmass * cvel * cvel; | 
| 225 | > |  | 
| 226 | > | } | 
| 227 | > | } | 
| 228 | > |  | 
| 229 | > | #ifdef IS_MPI | 
| 230 | > | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE, | 
| 231 | > | MPI::SUM); | 
| 232 | > | #endif | 
| 233 |  |  | 
| 234 | + | kinetic *= 0.5; | 
| 235 | + | eTemp =  (2.0 * kinetic) / | 
| 236 | + | (info_->getNFluctuatingCharges() * PhysicalConstants::kb ); | 
| 237 | + |  | 
| 238 | + | snap->setElectronicTemperature(eTemp); | 
| 239 | + | } | 
| 240 |  |  | 
| 241 | < | Mat3x3d tensor; | 
| 242 | < | RealType pressure; | 
| 241 | > | return snap->getElectronicTemperature(); | 
| 242 | > | } | 
| 243 |  |  | 
| 159 | – | tensor = getPressureTensor(); | 
| 244 |  |  | 
| 245 | < | pressure = PhysicalConstants::pressureConvert * (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0; | 
| 246 | < |  | 
| 247 | < | return pressure; | 
| 245 | > | RealType Thermo::getVolume() { | 
| 246 | > | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 247 | > | return snap->getVolume(); | 
| 248 |  | } | 
| 249 |  |  | 
| 250 | < | RealType Thermo::getPressure(int direction) { | 
| 250 | > | RealType Thermo::getPressure() { | 
| 251 | > | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 252 |  |  | 
| 253 | < | // Relies on the calculation of the full molecular pressure tensor | 
| 254 | < |  | 
| 255 | < |  | 
| 256 | < | Mat3x3d tensor; | 
| 257 | < | RealType pressure; | 
| 258 | < |  | 
| 259 | < | tensor = getPressureTensor(); | 
| 260 | < |  | 
| 261 | < | pressure = PhysicalConstants::pressureConvert * tensor(direction, direction); | 
| 262 | < |  | 
| 263 | < | return pressure; | 
| 253 | > | if (!snap->hasPressure) { | 
| 254 | > | // Relies on the calculation of the full molecular pressure tensor | 
| 255 | > |  | 
| 256 | > | Mat3x3d tensor; | 
| 257 | > | RealType pressure; | 
| 258 | > |  | 
| 259 | > | tensor = getPressureTensor(); | 
| 260 | > |  | 
| 261 | > | pressure = PhysicalConstants::pressureConvert * | 
| 262 | > | (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0; | 
| 263 | > |  | 
| 264 | > | snap->setPressure(pressure); | 
| 265 | > | } | 
| 266 | > |  | 
| 267 | > | return snap->getPressure(); | 
| 268 |  | } | 
| 269 |  |  | 
| 270 |  | Mat3x3d Thermo::getPressureTensor() { | 
| 271 |  | // returns pressure tensor in units amu*fs^-2*Ang^-1 | 
| 272 |  | // routine derived via viral theorem description in: | 
| 273 |  | // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322 | 
| 274 | < | Mat3x3d pressureTensor; | 
| 186 | < | Mat3x3d p_local(0.0); | 
| 187 | < | Mat3x3d p_global(0.0); | 
| 274 | > | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 275 |  |  | 
| 276 | < | SimInfo::MoleculeIterator i; | 
| 190 | < | std::vector<StuntDouble*>::iterator j; | 
| 191 | < | Molecule* mol; | 
| 192 | < | StuntDouble* integrableObject; | 
| 193 | < | for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { | 
| 194 | < | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 195 | < | integrableObject = mol->nextIntegrableObject(j)) { | 
| 276 | > | if (!snap->hasPressureTensor) { | 
| 277 |  |  | 
| 278 | < | RealType mass = integrableObject->getMass(); | 
| 279 | < | Vector3d vcom = integrableObject->getVel(); | 
| 280 | < | p_local += mass * outProduct(vcom, vcom); | 
| 278 | > | Mat3x3d pressureTensor; | 
| 279 | > | Mat3x3d p_tens(0.0); | 
| 280 | > | RealType mass; | 
| 281 | > | Vector3d vcom; | 
| 282 | > |  | 
| 283 | > | SimInfo::MoleculeIterator i; | 
| 284 | > | vector<StuntDouble*>::iterator j; | 
| 285 | > | Molecule* mol; | 
| 286 | > | StuntDouble* sd; | 
| 287 | > | for (mol = info_->beginMolecule(i); mol != NULL; | 
| 288 | > | mol = info_->nextMolecule(i)) { | 
| 289 | > |  | 
| 290 | > | for (sd = mol->beginIntegrableObject(j); sd != NULL; | 
| 291 | > | sd = mol->nextIntegrableObject(j)) { | 
| 292 | > |  | 
| 293 | > | mass = sd->getMass(); | 
| 294 | > | vcom = sd->getVel(); | 
| 295 | > | p_tens += mass * outProduct(vcom, vcom); | 
| 296 | > | } | 
| 297 |  | } | 
| 298 | + |  | 
| 299 | + | #ifdef IS_MPI | 
| 300 | + | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, p_tens.getArrayPointer(), 9, | 
| 301 | + | MPI::REALTYPE, MPI::SUM); | 
| 302 | + | #endif | 
| 303 | + |  | 
| 304 | + | RealType volume = this->getVolume(); | 
| 305 | + | Mat3x3d stressTensor = snap->getStressTensor(); | 
| 306 | + |  | 
| 307 | + | pressureTensor =  (p_tens + | 
| 308 | + | PhysicalConstants::energyConvert * stressTensor)/volume; | 
| 309 | + |  | 
| 310 | + | snap->setPressureTensor(pressureTensor); | 
| 311 |  | } | 
| 312 | + | return snap->getPressureTensor(); | 
| 313 | + | } | 
| 314 |  |  | 
| 315 | + |  | 
| 316 | + |  | 
| 317 | + |  | 
| 318 | + | Vector3d Thermo::getSystemDipole() { | 
| 319 | + | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 320 | + |  | 
| 321 | + | if (!snap->hasSystemDipole) { | 
| 322 | + | SimInfo::MoleculeIterator miter; | 
| 323 | + | vector<Atom*>::iterator aiter; | 
| 324 | + | Molecule* mol; | 
| 325 | + | Atom* atom; | 
| 326 | + | RealType charge; | 
| 327 | + | RealType moment(0.0); | 
| 328 | + | Vector3d ri(0.0); | 
| 329 | + | Vector3d dipoleVector(0.0); | 
| 330 | + | Vector3d nPos(0.0); | 
| 331 | + | Vector3d pPos(0.0); | 
| 332 | + | RealType nChg(0.0); | 
| 333 | + | RealType pChg(0.0); | 
| 334 | + | int nCount = 0; | 
| 335 | + | int pCount = 0; | 
| 336 | + |  | 
| 337 | + | RealType chargeToC = 1.60217733e-19; | 
| 338 | + | RealType angstromToM = 1.0e-10; | 
| 339 | + | RealType debyeToCm = 3.33564095198e-30; | 
| 340 | + |  | 
| 341 | + | for (mol = info_->beginMolecule(miter); mol != NULL; | 
| 342 | + | mol = info_->nextMolecule(miter)) { | 
| 343 | + |  | 
| 344 | + | for (atom = mol->beginAtom(aiter); atom != NULL; | 
| 345 | + | atom = mol->nextAtom(aiter)) { | 
| 346 | + |  | 
| 347 | + | charge = 0.0; | 
| 348 | + |  | 
| 349 | + | FixedChargeAdapter fca = FixedChargeAdapter(atom->getAtomType()); | 
| 350 | + | if ( fca.isFixedCharge() ) { | 
| 351 | + | charge = fca.getCharge(); | 
| 352 | + | } | 
| 353 | + |  | 
| 354 | + | FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atom->getAtomType()); | 
| 355 | + | if ( fqa.isFluctuatingCharge() ) { | 
| 356 | + | charge += atom->getFlucQPos(); | 
| 357 | + | } | 
| 358 | + |  | 
| 359 | + | charge *= chargeToC; | 
| 360 | + |  | 
| 361 | + | ri = atom->getPos(); | 
| 362 | + | snap->wrapVector(ri); | 
| 363 | + | ri *= angstromToM; | 
| 364 | + |  | 
| 365 | + | if (charge < 0.0) { | 
| 366 | + | nPos += ri; | 
| 367 | + | nChg -= charge; | 
| 368 | + | nCount++; | 
| 369 | + | } else if (charge > 0.0) { | 
| 370 | + | pPos += ri; | 
| 371 | + | pChg += charge; | 
| 372 | + | pCount++; | 
| 373 | + | } | 
| 374 | + |  | 
| 375 | + | MultipoleAdapter ma = MultipoleAdapter(atom->getAtomType()); | 
| 376 | + | if (ma.isDipole() ) { | 
| 377 | + | Vector3d u_i = atom->getElectroFrame().getColumn(2); | 
| 378 | + | moment = ma.getDipoleMoment(); | 
| 379 | + | moment *= debyeToCm; | 
| 380 | + | dipoleVector += u_i * moment; | 
| 381 | + | } | 
| 382 | + | } | 
| 383 | + | } | 
| 384 | + |  | 
| 385 | + |  | 
| 386 |  | #ifdef IS_MPI | 
| 387 | < | MPI_Allreduce(p_local.getArrayPointer(), p_global.getArrayPointer(), 9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 388 | < | #else | 
| 389 | < | p_global = p_local; | 
| 390 | < | #endif // is_mpi | 
| 387 | > | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pChg, 1, MPI::REALTYPE, | 
| 388 | > | MPI::SUM); | 
| 389 | > | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &nChg, 1, MPI::REALTYPE, | 
| 390 | > | MPI::SUM); | 
| 391 |  |  | 
| 392 | < | RealType volume = this->getVolume(); | 
| 393 | < | Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 394 | < | Mat3x3d tau = curSnapshot->statData.getTau(); | 
| 392 | > | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pCount, 1, MPI::INTEGER, | 
| 393 | > | MPI::SUM); | 
| 394 | > | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &nCount, 1, MPI::INTEGER, | 
| 395 | > | MPI::SUM); | 
| 396 |  |  | 
| 397 | < | pressureTensor =  (p_global + PhysicalConstants::energyConvert* tau)/volume; | 
| 397 | > | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, pPos.getArrayPointer(), 3, | 
| 398 | > | MPI::REALTYPE, MPI::SUM); | 
| 399 | > | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, nPos.getArrayPointer(), 3, | 
| 400 | > | MPI::REALTYPE, MPI::SUM); | 
| 401 |  |  | 
| 402 | < | return pressureTensor; | 
| 402 | > | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, dipoleVector.getArrayPointer(), | 
| 403 | > | 3, MPI::REALTYPE, MPI::SUM); | 
| 404 | > | #endif | 
| 405 | > |  | 
| 406 | > | // first load the accumulated dipole moment (if dipoles were present) | 
| 407 | > | Vector3d boxDipole = dipoleVector; | 
| 408 | > | // now include the dipole moment due to charges | 
| 409 | > | // use the lesser of the positive and negative charge totals | 
| 410 | > | RealType chg_value = nChg <= pChg ? nChg : pChg; | 
| 411 | > |  | 
| 412 | > | // find the average positions | 
| 413 | > | if (pCount > 0 && nCount > 0 ) { | 
| 414 | > | pPos /= pCount; | 
| 415 | > | nPos /= nCount; | 
| 416 | > | } | 
| 417 | > |  | 
| 418 | > | // dipole is from the negative to the positive (physics notation) | 
| 419 | > | boxDipole += (pPos - nPos) * chg_value; | 
| 420 | > | snap->setSystemDipole(boxDipole); | 
| 421 | > | } | 
| 422 | > |  | 
| 423 | > | return snap->getSystemDipole(); | 
| 424 |  | } | 
| 425 |  |  | 
| 426 | < |  | 
| 427 | < | void Thermo::saveStat(){ | 
| 426 | > | // Returns the Heat Flux Vector for the system | 
| 427 | > | Vector3d Thermo::getHeatFlux(){ | 
| 428 |  | Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 429 | < | Stats& stat = currSnapshot->statData; | 
| 429 | > | SimInfo::MoleculeIterator miter; | 
| 430 | > | vector<StuntDouble*>::iterator iiter; | 
| 431 | > | Molecule* mol; | 
| 432 | > | StuntDouble* sd; | 
| 433 | > | RigidBody::AtomIterator ai; | 
| 434 | > | Atom* atom; | 
| 435 | > | Vector3d vel; | 
| 436 | > | Vector3d angMom; | 
| 437 | > | Mat3x3d I; | 
| 438 | > | int i; | 
| 439 | > | int j; | 
| 440 | > | int k; | 
| 441 | > | RealType mass; | 
| 442 |  |  | 
| 443 | < | stat[Stats::KINETIC_ENERGY] = getKinetic(); | 
| 444 | < | stat[Stats::POTENTIAL_ENERGY] = getPotential(); | 
| 445 | < | stat[Stats::TOTAL_ENERGY] = stat[Stats::KINETIC_ENERGY]  + stat[Stats::POTENTIAL_ENERGY] ; | 
| 446 | < | stat[Stats::TEMPERATURE] = getTemperature(); | 
| 447 | < | stat[Stats::PRESSURE] = getPressure(); | 
| 448 | < | stat[Stats::VOLUME] = getVolume(); | 
| 443 | > | Vector3d x_a; | 
| 444 | > | RealType kinetic; | 
| 445 | > | RealType potential; | 
| 446 | > | RealType eatom; | 
| 447 | > | RealType AvgE_a_ = 0; | 
| 448 | > | // Convective portion of the heat flux | 
| 449 | > | Vector3d heatFluxJc = V3Zero; | 
| 450 |  |  | 
| 451 | < | Mat3x3d tensor =getPressureTensor(); | 
| 452 | < | stat[Stats::PRESSURE_TENSOR_XX] = tensor(0, 0); | 
| 453 | < | stat[Stats::PRESSURE_TENSOR_XY] = tensor(0, 1); | 
| 454 | < | stat[Stats::PRESSURE_TENSOR_XZ] = tensor(0, 2); | 
| 455 | < | stat[Stats::PRESSURE_TENSOR_YX] = tensor(1, 0); | 
| 456 | < | stat[Stats::PRESSURE_TENSOR_YY] = tensor(1, 1); | 
| 457 | < | stat[Stats::PRESSURE_TENSOR_YZ] = tensor(1, 2); | 
| 458 | < | stat[Stats::PRESSURE_TENSOR_ZX] = tensor(2, 0); | 
| 459 | < | stat[Stats::PRESSURE_TENSOR_ZY] = tensor(2, 1); | 
| 460 | < | stat[Stats::PRESSURE_TENSOR_ZZ] = tensor(2, 2); | 
| 461 | < | Vector3d GKappa_t = getThermalHelfand(); | 
| 462 | < | stat[Stats::THERMAL_HELFANDMOMENT_X] = GKappa_t.x(); | 
| 463 | < | stat[Stats::THERMAL_HELFANDMOMENT_Y] = GKappa_t.y(); | 
| 464 | < | stat[Stats::THERMAL_HELFANDMOMENT_Z] = GKappa_t.z(); | 
| 451 | > | /* Calculate convective portion of the heat flux */ | 
| 452 | > | for (mol = info_->beginMolecule(miter); mol != NULL; | 
| 453 | > | mol = info_->nextMolecule(miter)) { | 
| 454 | > |  | 
| 455 | > | for (sd = mol->beginIntegrableObject(iiter); | 
| 456 | > | sd != NULL; | 
| 457 | > | sd = mol->nextIntegrableObject(iiter)) { | 
| 458 | > |  | 
| 459 | > | mass = sd->getMass(); | 
| 460 | > | vel = sd->getVel(); | 
| 461 | > |  | 
| 462 | > | kinetic = mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]); | 
| 463 | > |  | 
| 464 | > | if (sd->isDirectional()) { | 
| 465 | > | angMom = sd->getJ(); | 
| 466 | > | I = sd->getI(); | 
| 467 | > |  | 
| 468 | > | if (sd->isLinear()) { | 
| 469 | > | i = sd->linearAxis(); | 
| 470 | > | j = (i + 1) % 3; | 
| 471 | > | k = (i + 2) % 3; | 
| 472 | > | kinetic += angMom[j] * angMom[j] / I(j, j) | 
| 473 | > | + angMom[k] * angMom[k] / I(k, k); | 
| 474 | > | } else { | 
| 475 | > | kinetic += angMom[0]*angMom[0]/I(0, 0) | 
| 476 | > | + angMom[1]*angMom[1]/I(1, 1) | 
| 477 | > | + angMom[2]*angMom[2]/I(2, 2); | 
| 478 | > | } | 
| 479 | > | } | 
| 480 | > |  | 
| 481 | > | potential = 0.0; | 
| 482 | > |  | 
| 483 | > | if (sd->isRigidBody()) { | 
| 484 | > | RigidBody* rb = dynamic_cast<RigidBody*>(sd); | 
| 485 | > | for (atom = rb->beginAtom(ai); atom != NULL; | 
| 486 | > | atom = rb->nextAtom(ai)) { | 
| 487 | > | potential +=  atom->getParticlePot(); | 
| 488 | > | } | 
| 489 | > | } else { | 
| 490 | > | potential = sd->getParticlePot(); | 
| 491 | > | } | 
| 492 | > |  | 
| 493 | > | potential *= PhysicalConstants::energyConvert; // amu A^2/fs^2 | 
| 494 | > | // The potential may not be a 1/2 factor | 
| 495 | > | eatom = (kinetic + potential)/2.0;  // amu A^2/fs^2 | 
| 496 | > | heatFluxJc[0] += eatom*vel[0]; // amu A^3/fs^3 | 
| 497 | > | heatFluxJc[1] += eatom*vel[1]; // amu A^3/fs^3 | 
| 498 | > | heatFluxJc[2] += eatom*vel[2]; // amu A^3/fs^3 | 
| 499 | > | } | 
| 500 | > | } | 
| 501 | > |  | 
| 502 | > | /* The J_v vector is reduced in the forceManager so everyone has | 
| 503 | > | *  the global Jv. Jc is computed over the local atoms and must be | 
| 504 | > | *  reduced among all processors. | 
| 505 | > | */ | 
| 506 | > | #ifdef IS_MPI | 
| 507 | > | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &heatFluxJc[0], 3, MPI::REALTYPE, | 
| 508 | > | MPI::SUM); | 
| 509 | > | #endif | 
| 510 | > |  | 
| 511 | > | // (kcal/mol * A/fs) * conversion => (amu A^3)/fs^3 | 
| 512 | > |  | 
| 513 | > | Vector3d heatFluxJv = currSnapshot->getConductiveHeatFlux() * | 
| 514 | > | PhysicalConstants::energyConvert; | 
| 515 | > |  | 
| 516 | > | // Correct for the fact the flux is 1/V (Jc + Jv) | 
| 517 | > | return (heatFluxJv + heatFluxJc) / this->getVolume(); // amu / fs^3 | 
| 518 | > | } | 
| 519 | > |  | 
| 520 | > |  | 
| 521 | > | Vector3d Thermo::getComVel(){ | 
| 522 | > | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 523 | > |  | 
| 524 | > | if (!snap->hasCOMvel) { | 
| 525 | > |  | 
| 526 | > | SimInfo::MoleculeIterator i; | 
| 527 | > | Molecule* mol; | 
| 528 | > |  | 
| 529 | > | Vector3d comVel(0.0); | 
| 530 | > | RealType totalMass(0.0); | 
| 531 | > |  | 
| 532 | > | for (mol = info_->beginMolecule(i); mol != NULL; | 
| 533 | > | mol = info_->nextMolecule(i)) { | 
| 534 | > | RealType mass = mol->getMass(); | 
| 535 | > | totalMass += mass; | 
| 536 | > | comVel += mass * mol->getComVel(); | 
| 537 | > | } | 
| 538 | > |  | 
| 539 | > | #ifdef IS_MPI | 
| 540 | > | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE, | 
| 541 | > | MPI::SUM); | 
| 542 | > | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, comVel.getArrayPointer(), 3, | 
| 543 | > | MPI::REALTYPE, MPI::SUM); | 
| 544 | > | #endif | 
| 545 | > |  | 
| 546 | > | comVel /= totalMass; | 
| 547 | > | snap->setCOMvel(comVel); | 
| 548 | > | } | 
| 549 | > | return snap->getCOMvel(); | 
| 550 | > | } | 
| 551 |  |  | 
| 552 | < | Globals* simParams = info_->getSimParams(); | 
| 552 | > | Vector3d Thermo::getCom(){ | 
| 553 | > | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 554 |  |  | 
| 555 | < | if (simParams->haveTaggedAtomPair() && | 
| 556 | < | simParams->havePrintTaggedPairDistance()) { | 
| 557 | < | if ( simParams->getPrintTaggedPairDistance()) { | 
| 555 | > | if (!snap->hasCOM) { | 
| 556 | > |  | 
| 557 | > | SimInfo::MoleculeIterator i; | 
| 558 | > | Molecule* mol; | 
| 559 | > |  | 
| 560 | > | Vector3d com(0.0); | 
| 561 | > | RealType totalMass(0.0); | 
| 562 | > |  | 
| 563 | > | for (mol = info_->beginMolecule(i); mol != NULL; | 
| 564 | > | mol = info_->nextMolecule(i)) { | 
| 565 | > | RealType mass = mol->getMass(); | 
| 566 | > | totalMass += mass; | 
| 567 | > | com += mass * mol->getCom(); | 
| 568 | > | } | 
| 569 | > |  | 
| 570 | > | #ifdef IS_MPI | 
| 571 | > | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE, | 
| 572 | > | MPI::SUM); | 
| 573 | > | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, com.getArrayPointer(), 3, | 
| 574 | > | MPI::REALTYPE, MPI::SUM); | 
| 575 | > | #endif | 
| 576 | > |  | 
| 577 | > | com /= totalMass; | 
| 578 | > | snap->setCOM(com); | 
| 579 | > | } | 
| 580 | > | return snap->getCOM(); | 
| 581 | > | } | 
| 582 |  |  | 
| 583 | < | std::pair<int, int> tap = simParams->getTaggedAtomPair(); | 
| 584 | < | Vector3d pos1, pos2, rab; | 
| 583 | > | /** | 
| 584 | > | * Returns center of mass and center of mass velocity in one | 
| 585 | > | * function call. | 
| 586 | > | */ | 
| 587 | > | void Thermo::getComAll(Vector3d &com, Vector3d &comVel){ | 
| 588 | > | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 589 |  |  | 
| 590 | + | if (!(snap->hasCOM && snap->hasCOMvel)) { | 
| 591 | + |  | 
| 592 | + | SimInfo::MoleculeIterator i; | 
| 593 | + | Molecule* mol; | 
| 594 | + |  | 
| 595 | + | RealType totalMass(0.0); | 
| 596 | + |  | 
| 597 | + | com = 0.0; | 
| 598 | + | comVel = 0.0; | 
| 599 | + |  | 
| 600 | + | for (mol = info_->beginMolecule(i); mol != NULL; | 
| 601 | + | mol = info_->nextMolecule(i)) { | 
| 602 | + | RealType mass = mol->getMass(); | 
| 603 | + | totalMass += mass; | 
| 604 | + | com += mass * mol->getCom(); | 
| 605 | + | comVel += mass * mol->getComVel(); | 
| 606 | + | } | 
| 607 | + |  | 
| 608 |  | #ifdef IS_MPI | 
| 609 | < | std::cerr << "tap = " << tap.first << "  " << tap.second << std::endl; | 
| 609 | > | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE, | 
| 610 | > | MPI::SUM); | 
| 611 | > | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, com.getArrayPointer(), 3, | 
| 612 | > | MPI::REALTYPE, MPI::SUM); | 
| 613 | > | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, comVel.getArrayPointer(), 3, | 
| 614 | > | MPI::REALTYPE, MPI::SUM); | 
| 615 | > | #endif | 
| 616 | > |  | 
| 617 | > | com /= totalMass; | 
| 618 | > | comVel /= totalMass; | 
| 619 | > | snap->setCOM(com); | 
| 620 | > | snap->setCOMvel(comVel); | 
| 621 | > | } | 
| 622 | > | com = snap->getCOM(); | 
| 623 | > | comVel = snap->getCOMvel(); | 
| 624 | > | return; | 
| 625 | > | } | 
| 626 | > |  | 
| 627 | > | /** | 
| 628 | > | * Return intertia tensor for entire system and angular momentum | 
| 629 | > | * Vector. | 
| 630 | > | * | 
| 631 | > | * | 
| 632 | > | * | 
| 633 | > | *    [  Ixx -Ixy  -Ixz ] | 
| 634 | > | * I =| -Iyx  Iyy  -Iyz | | 
| 635 | > | *    [ -Izx -Iyz   Izz ] | 
| 636 | > | */ | 
| 637 | > | void Thermo::getInertiaTensor(Mat3x3d &inertiaTensor, | 
| 638 | > | Vector3d &angularMomentum){ | 
| 639 |  |  | 
| 640 | < | int mol1 = info_->getGlobalMolMembership(tap.first); | 
| 641 | < | int mol2 = info_->getGlobalMolMembership(tap.second); | 
| 642 | < | std::cerr << "mols = " << mol1 << " " << mol2 << std::endl; | 
| 640 | > | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 641 | > |  | 
| 642 | > | if (!(snap->hasInertiaTensor && snap->hasCOMw)) { | 
| 643 | > |  | 
| 644 | > | RealType xx = 0.0; | 
| 645 | > | RealType yy = 0.0; | 
| 646 | > | RealType zz = 0.0; | 
| 647 | > | RealType xy = 0.0; | 
| 648 | > | RealType xz = 0.0; | 
| 649 | > | RealType yz = 0.0; | 
| 650 | > | Vector3d com(0.0); | 
| 651 | > | Vector3d comVel(0.0); | 
| 652 | > |  | 
| 653 | > | getComAll(com, comVel); | 
| 654 | > |  | 
| 655 | > | SimInfo::MoleculeIterator i; | 
| 656 | > | Molecule* mol; | 
| 657 | > |  | 
| 658 | > | Vector3d thisq(0.0); | 
| 659 | > | Vector3d thisv(0.0); | 
| 660 | > |  | 
| 661 | > | RealType thisMass = 0.0; | 
| 662 | > |  | 
| 663 | > | for (mol = info_->beginMolecule(i); mol != NULL; | 
| 664 | > | mol = info_->nextMolecule(i)) { | 
| 665 | > |  | 
| 666 | > | thisq = mol->getCom()-com; | 
| 667 | > | thisv = mol->getComVel()-comVel; | 
| 668 | > | thisMass = mol->getMass(); | 
| 669 | > | // Compute moment of intertia coefficients. | 
| 670 | > | xx += thisq[0]*thisq[0]*thisMass; | 
| 671 | > | yy += thisq[1]*thisq[1]*thisMass; | 
| 672 | > | zz += thisq[2]*thisq[2]*thisMass; | 
| 673 | > |  | 
| 674 | > | // compute products of intertia | 
| 675 | > | xy += thisq[0]*thisq[1]*thisMass; | 
| 676 | > | xz += thisq[0]*thisq[2]*thisMass; | 
| 677 | > | yz += thisq[1]*thisq[2]*thisMass; | 
| 678 | > |  | 
| 679 | > | angularMomentum += cross( thisq, thisv ) * thisMass; | 
| 680 | > | } | 
| 681 | > |  | 
| 682 | > | inertiaTensor(0,0) = yy + zz; | 
| 683 | > | inertiaTensor(0,1) = -xy; | 
| 684 | > | inertiaTensor(0,2) = -xz; | 
| 685 | > | inertiaTensor(1,0) = -xy; | 
| 686 | > | inertiaTensor(1,1) = xx + zz; | 
| 687 | > | inertiaTensor(1,2) = -yz; | 
| 688 | > | inertiaTensor(2,0) = -xz; | 
| 689 | > | inertiaTensor(2,1) = -yz; | 
| 690 | > | inertiaTensor(2,2) = xx + yy; | 
| 691 | > |  | 
| 692 | > | #ifdef IS_MPI | 
| 693 | > | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, inertiaTensor.getArrayPointer(), | 
| 694 | > | 9, MPI::REALTYPE, MPI::SUM); | 
| 695 | > | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, | 
| 696 | > | angularMomentum.getArrayPointer(), 3, | 
| 697 | > | MPI::REALTYPE, MPI::SUM); | 
| 698 | > | #endif | 
| 699 | > |  | 
| 700 | > | snap->setCOMw(angularMomentum); | 
| 701 | > | snap->setInertiaTensor(inertiaTensor); | 
| 702 | > | } | 
| 703 | > |  | 
| 704 | > | angularMomentum = snap->getCOMw(); | 
| 705 | > | inertiaTensor = snap->getInertiaTensor(); | 
| 706 | > |  | 
| 707 | > | return; | 
| 708 | > | } | 
| 709 |  |  | 
| 710 | + | // Returns the angular momentum of the system | 
| 711 | + | Vector3d Thermo::getAngularMomentum(){ | 
| 712 | + | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 713 | + |  | 
| 714 | + | if (!snap->hasCOMw) { | 
| 715 | + |  | 
| 716 | + | Vector3d com(0.0); | 
| 717 | + | Vector3d comVel(0.0); | 
| 718 | + | Vector3d angularMomentum(0.0); | 
| 719 | + |  | 
| 720 | + | getComAll(com, comVel); | 
| 721 | + |  | 
| 722 | + | SimInfo::MoleculeIterator i; | 
| 723 | + | Molecule* mol; | 
| 724 | + |  | 
| 725 | + | Vector3d thisr(0.0); | 
| 726 | + | Vector3d thisp(0.0); | 
| 727 | + |  | 
| 728 | + | RealType thisMass; | 
| 729 | + |  | 
| 730 | + | for (mol = info_->beginMolecule(i); mol != NULL; | 
| 731 | + | mol = info_->nextMolecule(i)) { | 
| 732 | + | thisMass = mol->getMass(); | 
| 733 | + | thisr = mol->getCom() - com; | 
| 734 | + | thisp = (mol->getComVel() - comVel) * thisMass; | 
| 735 | + |  | 
| 736 | + | angularMomentum += cross( thisr, thisp ); | 
| 737 | + | } | 
| 738 | + |  | 
| 739 | + | #ifdef IS_MPI | 
| 740 | + | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, | 
| 741 | + | angularMomentum.getArrayPointer(), 3, | 
| 742 | + | MPI::REALTYPE, MPI::SUM); | 
| 743 | + | #endif | 
| 744 | + |  | 
| 745 | + | snap->setCOMw(angularMomentum); | 
| 746 | + | } | 
| 747 | + |  | 
| 748 | + | return snap->getCOMw(); | 
| 749 | + | } | 
| 750 | + |  | 
| 751 | + |  | 
| 752 | + | /** | 
| 753 | + | * Returns the Volume of the system based on a ellipsoid with | 
| 754 | + | * semi-axes based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3 | 
| 755 | + | * where R_i are related to the principle inertia moments | 
| 756 | + | *  R_i = sqrt(C*I_i/N), this reduces to | 
| 757 | + | *  V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). | 
| 758 | + | * See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536. | 
| 759 | + | */ | 
| 760 | + | RealType Thermo::getGyrationalVolume(){ | 
| 761 | + | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 762 | + |  | 
| 763 | + | if (!snap->hasGyrationalVolume) { | 
| 764 | + |  | 
| 765 | + | Mat3x3d intTensor; | 
| 766 | + | RealType det; | 
| 767 | + | Vector3d dummyAngMom; | 
| 768 | + | RealType sysconstants; | 
| 769 | + | RealType geomCnst; | 
| 770 | + | RealType volume; | 
| 771 | + |  | 
| 772 | + | geomCnst = 3.0/2.0; | 
| 773 | + | /* Get the inertial tensor and angular momentum for free*/ | 
| 774 | + | getInertiaTensor(intTensor, dummyAngMom); | 
| 775 | + |  | 
| 776 | + | det = intTensor.determinant(); | 
| 777 | + | sysconstants = geomCnst / (RealType)(info_->getNGlobalIntegrableObjects()); | 
| 778 | + | volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(det); | 
| 779 | + |  | 
| 780 | + | snap->setGyrationalVolume(volume); | 
| 781 | + | } | 
| 782 | + | return snap->getGyrationalVolume(); | 
| 783 | + | } | 
| 784 | + |  | 
| 785 | + | void Thermo::getGyrationalVolume(RealType &volume, RealType &detI){ | 
| 786 | + | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 787 | + |  | 
| 788 | + | if (!(snap->hasInertiaTensor && snap->hasGyrationalVolume)) { | 
| 789 | + |  | 
| 790 | + | Mat3x3d intTensor; | 
| 791 | + | Vector3d dummyAngMom; | 
| 792 | + | RealType sysconstants; | 
| 793 | + | RealType geomCnst; | 
| 794 | + |  | 
| 795 | + | geomCnst = 3.0/2.0; | 
| 796 | + | /* Get the inertia tensor and angular momentum for free*/ | 
| 797 | + | this->getInertiaTensor(intTensor, dummyAngMom); | 
| 798 | + |  | 
| 799 | + | detI = intTensor.determinant(); | 
| 800 | + | sysconstants = geomCnst/(RealType)(info_->getNGlobalIntegrableObjects()); | 
| 801 | + | volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(detI); | 
| 802 | + | snap->setGyrationalVolume(volume); | 
| 803 | + | } else { | 
| 804 | + | volume = snap->getGyrationalVolume(); | 
| 805 | + | detI = snap->getInertiaTensor().determinant(); | 
| 806 | + | } | 
| 807 | + | return; | 
| 808 | + | } | 
| 809 | + |  | 
| 810 | + | RealType Thermo::getTaggedAtomPairDistance(){ | 
| 811 | + | Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 812 | + | Globals* simParams = info_->getSimParams(); | 
| 813 | + |  | 
| 814 | + | if (simParams->haveTaggedAtomPair() && | 
| 815 | + | simParams->havePrintTaggedPairDistance()) { | 
| 816 | + | if ( simParams->getPrintTaggedPairDistance()) { | 
| 817 | + |  | 
| 818 | + | pair<int, int> tap = simParams->getTaggedAtomPair(); | 
| 819 | + | Vector3d pos1, pos2, rab; | 
| 820 | + |  | 
| 821 | + | #ifdef IS_MPI | 
| 822 | + | int mol1 = info_->getGlobalMolMembership(tap.first); | 
| 823 | + | int mol2 = info_->getGlobalMolMembership(tap.second); | 
| 824 | + |  | 
| 825 |  | int proc1 = info_->getMolToProc(mol1); | 
| 826 |  | int proc2 = info_->getMolToProc(mol2); | 
| 827 |  |  | 
| 828 | < | std::cerr << " procs = " << proc1 << " " <<proc2 <<std::endl; | 
| 265 | < |  | 
| 266 | < | RealType data[3]; | 
| 828 | > | RealType data[3]; | 
| 829 |  | if (proc1 == worldRank) { | 
| 830 |  | StuntDouble* sd1 = info_->getIOIndexToIntegrableObject(tap.first); | 
| 269 | – | std::cerr << " on proc " << proc1 << ", sd1 has global index= " << sd1->getGlobalIndex() << std::endl; | 
| 831 |  | pos1 = sd1->getPos(); | 
| 832 |  | data[0] = pos1.x(); | 
| 833 |  | data[1] = pos1.y(); | 
| 834 | < | data[2] = pos1.z(); | 
| 834 | > | data[2] = pos1.z(); | 
| 835 |  | MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD); | 
| 836 |  | } else { | 
| 837 |  | MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD); | 
| 838 |  | pos1 = Vector3d(data); | 
| 839 |  | } | 
| 840 |  |  | 
| 280 | – |  | 
| 841 |  | if (proc2 == worldRank) { | 
| 842 |  | StuntDouble* sd2 = info_->getIOIndexToIntegrableObject(tap.second); | 
| 283 | – | std::cerr << " on proc " << proc2 << ", sd2 has global index= " << sd2->getGlobalIndex() << std::endl; | 
| 843 |  | pos2 = sd2->getPos(); | 
| 844 |  | data[0] = pos2.x(); | 
| 845 |  | data[1] = pos2.y(); | 
| 846 | < | data[2] = pos2.z(); | 
| 846 | > | data[2] = pos2.z(); | 
| 847 |  | MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD); | 
| 848 |  | } else { | 
| 849 |  | MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD); | 
| 854 |  | StuntDouble* at2 = info_->getIOIndexToIntegrableObject(tap.second); | 
| 855 |  | pos1 = at1->getPos(); | 
| 856 |  | pos2 = at2->getPos(); | 
| 857 | < | #endif | 
| 857 | > | #endif | 
| 858 |  | rab = pos2 - pos1; | 
| 859 |  | currSnapshot->wrapVector(rab); | 
| 860 | < | stat[Stats::TAGGED_PAIR_DISTANCE] =  rab.length(); | 
| 860 | > | return rab.length(); | 
| 861 |  | } | 
| 862 | + | return 0.0; | 
| 863 |  | } | 
| 864 | < |  | 
| 305 | < | /**@todo need refactorying*/ | 
| 306 | < | //Conserved Quantity is set by integrator and time is set by setTime | 
| 307 | < |  | 
| 864 | > | return 0.0; | 
| 865 |  | } | 
| 866 |  |  | 
| 867 | + | RealType Thermo::getHullVolume(){ | 
| 868 | + | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 869 |  |  | 
| 870 | + | #ifdef HAVE_QHULL | 
| 871 | + | if (!snap->hasHullVolume) { | 
| 872 | + | Hull* surfaceMesh_; | 
| 873 |  |  | 
| 874 | < | Vector3d Thermo::getBoxDipole() { | 
| 875 | < | Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 876 | < | SimInfo::MoleculeIterator miter; | 
| 877 | < | std::vector<Atom*>::iterator aiter; | 
| 878 | < | Molecule* mol; | 
| 879 | < | Atom* atom; | 
| 880 | < | RealType charge; | 
| 881 | < | RealType moment(0.0); | 
| 882 | < | Vector3d ri(0.0); | 
| 321 | < | Vector3d dipoleVector(0.0); | 
| 322 | < | Vector3d nPos(0.0); | 
| 323 | < | Vector3d pPos(0.0); | 
| 324 | < | RealType nChg(0.0); | 
| 325 | < | RealType pChg(0.0); | 
| 326 | < | int nCount = 0; | 
| 327 | < | int pCount = 0; | 
| 328 | < |  | 
| 329 | < | RealType chargeToC = 1.60217733e-19; | 
| 330 | < | RealType angstromToM = 1.0e-10;    RealType debyeToCm = 3.33564095198e-30; | 
| 331 | < |  | 
| 332 | < | for (mol = info_->beginMolecule(miter); mol != NULL; | 
| 333 | < | mol = info_->nextMolecule(miter)) { | 
| 334 | < |  | 
| 335 | < | for (atom = mol->beginAtom(aiter); atom != NULL; | 
| 336 | < | atom = mol->nextAtom(aiter)) { | 
| 337 | < |  | 
| 338 | < | if (atom->isCharge() ) { | 
| 339 | < | charge = 0.0; | 
| 340 | < | GenericData* data = atom->getAtomType()->getPropertyByName("Charge"); | 
| 341 | < | if (data != NULL) { | 
| 342 | < |  | 
| 343 | < | charge = (dynamic_cast<DoubleGenericData*>(data))->getData(); | 
| 344 | < | charge *= chargeToC; | 
| 345 | < |  | 
| 346 | < | ri = atom->getPos(); | 
| 347 | < | currSnapshot->wrapVector(ri); | 
| 348 | < | ri *= angstromToM; | 
| 349 | < |  | 
| 350 | < | if (charge < 0.0) { | 
| 351 | < | nPos += ri; | 
| 352 | < | nChg -= charge; | 
| 353 | < | nCount++; | 
| 354 | < | } else if (charge > 0.0) { | 
| 355 | < | pPos += ri; | 
| 356 | < | pChg += charge; | 
| 357 | < | pCount++; | 
| 358 | < | } | 
| 359 | < | } | 
| 360 | < | } | 
| 361 | < |  | 
| 362 | < | if (atom->isDipole() ) { | 
| 363 | < | Vector3d u_i = atom->getElectroFrame().getColumn(2); | 
| 364 | < | GenericData* data = dynamic_cast<DirectionalAtomType*>(atom->getAtomType())->getPropertyByName("Dipole"); | 
| 365 | < | if (data != NULL) { | 
| 366 | < | moment = (dynamic_cast<DoubleGenericData*>(data))->getData(); | 
| 367 | < |  | 
| 368 | < | moment *= debyeToCm; | 
| 369 | < | dipoleVector += u_i * moment; | 
| 370 | < | } | 
| 371 | < | } | 
| 874 | > | Globals* simParams = info_->getSimParams(); | 
| 875 | > | const std::string ht = simParams->getHULL_Method(); | 
| 876 | > |  | 
| 877 | > | if (ht == "Convex") { | 
| 878 | > | surfaceMesh_ = new ConvexHull(); | 
| 879 | > | } else if (ht == "AlphaShape") { | 
| 880 | > | surfaceMesh_ = new AlphaHull(simParams->getAlpha()); | 
| 881 | > | } else { | 
| 882 | > | return 0.0; | 
| 883 |  | } | 
| 884 | + |  | 
| 885 | + | // Build a vector of stunt doubles to determine if they are | 
| 886 | + | // surface atoms | 
| 887 | + | std::vector<StuntDouble*> localSites_; | 
| 888 | + | Molecule* mol; | 
| 889 | + | StuntDouble* sd; | 
| 890 | + | SimInfo::MoleculeIterator i; | 
| 891 | + | Molecule::IntegrableObjectIterator  j; | 
| 892 | + |  | 
| 893 | + | for (mol = info_->beginMolecule(i); mol != NULL; | 
| 894 | + | mol = info_->nextMolecule(i)) { | 
| 895 | + | for (sd = mol->beginIntegrableObject(j); | 
| 896 | + | sd != NULL; | 
| 897 | + | sd = mol->nextIntegrableObject(j)) { | 
| 898 | + | localSites_.push_back(sd); | 
| 899 | + | } | 
| 900 | + | } | 
| 901 | + |  | 
| 902 | + | // Compute surface Mesh | 
| 903 | + | surfaceMesh_->computeHull(localSites_); | 
| 904 | + | snap->setHullVolume(surfaceMesh_->getVolume()); | 
| 905 |  | } | 
| 906 | < |  | 
| 375 | < |  | 
| 376 | < | #ifdef IS_MPI | 
| 377 | < | RealType pChg_global, nChg_global; | 
| 378 | < | int pCount_global, nCount_global; | 
| 379 | < | Vector3d pPos_global, nPos_global, dipVec_global; | 
| 380 | < |  | 
| 381 | < | MPI_Allreduce(&pChg, &pChg_global, 1, MPI_REALTYPE, MPI_SUM, | 
| 382 | < | MPI_COMM_WORLD); | 
| 383 | < | pChg = pChg_global; | 
| 384 | < | MPI_Allreduce(&nChg, &nChg_global, 1, MPI_REALTYPE, MPI_SUM, | 
| 385 | < | MPI_COMM_WORLD); | 
| 386 | < | nChg = nChg_global; | 
| 387 | < | MPI_Allreduce(&pCount, &pCount_global, 1, MPI_INTEGER, MPI_SUM, | 
| 388 | < | MPI_COMM_WORLD); | 
| 389 | < | pCount = pCount_global; | 
| 390 | < | MPI_Allreduce(&nCount, &nCount_global, 1, MPI_INTEGER, MPI_SUM, | 
| 391 | < | MPI_COMM_WORLD); | 
| 392 | < | nCount = nCount_global; | 
| 393 | < | MPI_Allreduce(pPos.getArrayPointer(), pPos_global.getArrayPointer(), 3, | 
| 394 | < | MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 395 | < | pPos = pPos_global; | 
| 396 | < | MPI_Allreduce(nPos.getArrayPointer(), nPos_global.getArrayPointer(), 3, | 
| 397 | < | MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 398 | < | nPos = nPos_global; | 
| 399 | < | MPI_Allreduce(dipoleVector.getArrayPointer(), | 
| 400 | < | dipVec_global.getArrayPointer(), 3, | 
| 401 | < | MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 402 | < | dipoleVector = dipVec_global; | 
| 403 | < | #endif //is_mpi | 
| 404 | < |  | 
| 405 | < | // first load the accumulated dipole moment (if dipoles were present) | 
| 406 | < | Vector3d boxDipole = dipoleVector; | 
| 407 | < | // now include the dipole moment due to charges | 
| 408 | < | // use the lesser of the positive and negative charge totals | 
| 409 | < | RealType chg_value = nChg <= pChg ? nChg : pChg; | 
| 410 | < |  | 
| 411 | < | // find the average positions | 
| 412 | < | if (pCount > 0 && nCount > 0 ) { | 
| 413 | < | pPos /= pCount; | 
| 414 | < | nPos /= nCount; | 
| 415 | < | } | 
| 416 | < |  | 
| 417 | < | // dipole is from the negative to the positive (physics notation) | 
| 418 | < | boxDipole += (pPos - nPos) * chg_value; | 
| 419 | < |  | 
| 420 | < | return boxDipole; | 
| 421 | < | } | 
| 422 | < |  | 
| 423 | < | Vector3d Thermo::getThermalHelfand() { | 
| 424 | < | Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 425 | < | SimInfo::MoleculeIterator miter; | 
| 426 | < | std::vector<Atom*>::iterator aiter; | 
| 427 | < | Molecule* mol; | 
| 428 | < | Atom* atom; | 
| 429 | < | RealType mass; | 
| 430 | < | Vector3d velocity; | 
| 431 | < | Vector3d x_a; | 
| 432 | < | RealType kinetic; | 
| 433 | < | RealType potential; | 
| 434 | < | RealType eatom; | 
| 435 | < | RealType AvgE_a_ = 0; | 
| 436 | < | Vector3d GKappa_t = V3Zero; | 
| 437 | < | Vector3d ThermalHelfandMoment; | 
| 438 | < |  | 
| 439 | < | for (mol = info_->beginMolecule(miter); mol != NULL; | 
| 440 | < | mol = info_->nextMolecule(miter)) { | 
| 441 | < |  | 
| 442 | < | for (atom = mol->beginAtom(aiter); atom != NULL; | 
| 443 | < | atom = mol->nextAtom(aiter)) { | 
| 444 | < |  | 
| 445 | < | mass = atom->getMass(); | 
| 446 | < | velocity = atom->getVel(); | 
| 447 | < | kinetic = mass * (velocity[0]*velocity[0] + velocity[1]*velocity[1] + | 
| 448 | < | velocity[2]*velocity[2]) / PhysicalConstants::energyConvert; | 
| 449 | < | potential =  atom->getParticlePot(); | 
| 450 | < | eatom += (kinetic + potential)/2.0; | 
| 451 | < | } | 
| 452 | < | } | 
| 453 | < |  | 
| 454 | < | int natoms = info_->getNGlobalAtoms(); | 
| 455 | < | #ifdef IS_MPI | 
| 456 | < |  | 
| 457 | < | MPI_Allreduce(&eatom, &AvgE_a_, 1, MPI_REALTYPE, MPI_SUM, | 
| 458 | < | MPI_COMM_WORLD); | 
| 906 | > | return snap->getHullVolume(); | 
| 907 |  | #else | 
| 908 | < | AvgE_a_ = eatom; | 
| 908 | > | return 0.0; | 
| 909 |  | #endif | 
| 910 | < | AvgE_a_ = AvgE_a_/RealType(natoms); | 
| 911 | < |  | 
| 464 | < | for (mol = info_->beginMolecule(miter); mol != NULL; | 
| 465 | < | mol = info_->nextMolecule(miter)) { | 
| 466 | < |  | 
| 467 | < | for (atom = mol->beginAtom(aiter); atom != NULL; | 
| 468 | < | atom = mol->nextAtom(aiter)) { | 
| 469 | < |  | 
| 470 | < | /* We think that x_a is relative to the total box and should be a wrapped coordinate */ | 
| 471 | < | x_a = atom->getPos(); | 
| 472 | < | currSnapshot->wrapVector(x_a); | 
| 473 | < | potential =  atom->getParticlePot(); | 
| 474 | < | velocity = atom->getVel(); | 
| 475 | < | kinetic = mass * (velocity[0]*velocity[0] + velocity[1]*velocity[1] + | 
| 476 | < | velocity[2]*velocity[2]) / PhysicalConstants::energyConvert; | 
| 477 | < | eatom += (kinetic + potential)/2.0; | 
| 478 | < | GKappa_t += x_a*(eatom-AvgE_a_); | 
| 479 | < | } | 
| 480 | < | } | 
| 481 | < | #ifdef IS_MPI | 
| 482 | < | MPI_Allreduce(GKappa_t.getArrayPointer(), ThermalHelfandMoment.getArrayPointer(), 3, | 
| 483 | < | MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 484 | < | #else | 
| 485 | < | ThermalHelfandMoment = GKappa_t; | 
| 486 | < | #endif | 
| 487 | < | return ThermalHelfandMoment; | 
| 488 | < |  | 
| 489 | < | } | 
| 490 | < |  | 
| 491 | < |  | 
| 492 | < |  | 
| 493 | < | } //end namespace OpenMD | 
| 910 | > | } | 
| 911 | > | } |