| 1 | + | /* | 
| 2 | + | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | + | * | 
| 4 | + | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | + | * non-exclusive, royalty free, license to use, modify and | 
| 6 | + | * redistribute this software in source and binary code form, provided | 
| 7 | + | * that the following conditions are met: | 
| 8 | + | * | 
| 9 | + | * 1. Acknowledgement of the program authors must be made in any | 
| 10 | + | *    publication of scientific results based in part on use of the | 
| 11 | + | *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | + | *    the article in which the program was described (Matthew | 
| 13 | + | *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | + | *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | + | *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | + | *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | + | * | 
| 18 | + | * 2. Redistributions of source code must retain the above copyright | 
| 19 | + | *    notice, this list of conditions and the following disclaimer. | 
| 20 | + | * | 
| 21 | + | * 3. Redistributions in binary form must reproduce the above copyright | 
| 22 | + | *    notice, this list of conditions and the following disclaimer in the | 
| 23 | + | *    documentation and/or other materials provided with the | 
| 24 | + | *    distribution. | 
| 25 | + | * | 
| 26 | + | * This software is provided "AS IS," without a warranty of any | 
| 27 | + | * kind. All express or implied conditions, representations and | 
| 28 | + | * warranties, including any implied warranty of merchantability, | 
| 29 | + | * fitness for a particular purpose or non-infringement, are hereby | 
| 30 | + | * excluded.  The University of Notre Dame and its licensors shall not | 
| 31 | + | * be liable for any damages suffered by licensee as a result of | 
| 32 | + | * using, modifying or distributing the software or its | 
| 33 | + | * derivatives. In no event will the University of Notre Dame or its | 
| 34 | + | * licensors be liable for any lost revenue, profit or data, or for | 
| 35 | + | * direct, indirect, special, consequential, incidental or punitive | 
| 36 | + | * damages, however caused and regardless of the theory of liability, | 
| 37 | + | * arising out of the use of or inability to use software, even if the | 
| 38 | + | * University of Notre Dame has been advised of the possibility of | 
| 39 | + | * such damages. | 
| 40 | + | */ | 
| 41 | + |  | 
| 42 |  | #include <math.h> | 
| 43 |  | #include <iostream> | 
| 3 | – | using namespace std; | 
| 44 |  |  | 
| 45 |  | #ifdef IS_MPI | 
| 46 |  | #include <mpi.h> | 
| 47 |  | #endif //is_mpi | 
| 48 |  |  | 
| 49 |  | #include "brains/Thermo.hpp" | 
| 50 | < | #include "primitives/SRI.hpp" | 
| 11 | < | #include "integrators/Integrator.hpp" | 
| 50 | > | #include "primitives/Molecule.hpp" | 
| 51 |  | #include "utils/simError.h" | 
| 52 | < | #include "math/MatVec3.h" | 
| 52 | > | #include "utils/OOPSEConstant.hpp" | 
| 53 |  |  | 
| 54 | < | #ifdef IS_MPI | 
| 16 | < | #define __C | 
| 17 | < | #include "brains/mpiSimulation.hpp" | 
| 18 | < | #endif // is_mpi | 
| 54 | > | namespace oopse { | 
| 55 |  |  | 
| 56 | < | inline double roundMe( double x ){ | 
| 57 | < | return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 ); | 
| 58 | < | } | 
| 56 | > | double Thermo::getKinetic() { | 
| 57 | > | SimInfo::MoleculeIterator miter; | 
| 58 | > | std::vector<StuntDouble*>::iterator iiter; | 
| 59 | > | Molecule* mol; | 
| 60 | > | StuntDouble* integrableObject; | 
| 61 | > | Vector3d vel; | 
| 62 | > | Vector3d angMom; | 
| 63 | > | Mat3x3d I; | 
| 64 | > | int i; | 
| 65 | > | int j; | 
| 66 | > | int k; | 
| 67 | > | double kinetic = 0.0; | 
| 68 | > | double kinetic_global = 0.0; | 
| 69 | > |  | 
| 70 | > | for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) { | 
| 71 | > | for (integrableObject = mol->beginIntegrableObject(iiter); integrableObject != NULL; | 
| 72 | > | integrableObject = mol->nextIntegrableObject(iiter)) { | 
| 73 |  |  | 
| 74 | < | Thermo::Thermo( SimInfo* the_info ) { | 
| 75 | < | info = the_info; | 
| 26 | < | int baseSeed = the_info->getSeed(); | 
| 27 | < |  | 
| 28 | < | gaussStream = new gaussianSPRNG( baseSeed ); | 
| 29 | < | } | 
| 74 | > | double mass = integrableObject->getMass(); | 
| 75 | > | Vector3d vel = integrableObject->getVel(); | 
| 76 |  |  | 
| 77 | < | Thermo::~Thermo(){ | 
| 32 | < | delete gaussStream; | 
| 33 | < | } | 
| 77 | > | kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]); | 
| 78 |  |  | 
| 79 | < | double Thermo::getKinetic(){ | 
| 79 | > | if (integrableObject->isDirectional()) { | 
| 80 | > | angMom = integrableObject->getJ(); | 
| 81 | > | I = integrableObject->getI(); | 
| 82 |  |  | 
| 83 | < | const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2 | 
| 84 | < | double kinetic; | 
| 85 | < | double amass; | 
| 86 | < | double aVel[3], aJ[3], I[3][3]; | 
| 87 | < | int i, j, k, kl; | 
| 83 | > | if (integrableObject->isLinear()) { | 
| 84 | > | i = integrableObject->linearAxis(); | 
| 85 | > | j = (i + 1) % 3; | 
| 86 | > | k = (i + 2) % 3; | 
| 87 | > | kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k); | 
| 88 | > | } else { | 
| 89 | > | kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1) | 
| 90 | > | + angMom[2]*angMom[2]/I(2, 2); | 
| 91 | > | } | 
| 92 | > | } | 
| 93 | > |  | 
| 94 | > | } | 
| 95 | > | } | 
| 96 | > |  | 
| 97 | > | #ifdef IS_MPI | 
| 98 |  |  | 
| 99 | < | double kinetic_global; | 
| 100 | < | vector<StuntDouble *> integrableObjects = info->integrableObjects; | 
| 101 | < |  | 
| 46 | < | kinetic = 0.0; | 
| 47 | < | kinetic_global = 0.0; | 
| 99 | > | MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_DOUBLE, MPI_SUM, | 
| 100 | > | MPI_COMM_WORLD); | 
| 101 | > | kinetic = kinetic_global; | 
| 102 |  |  | 
| 49 | – | for (kl=0; kl<integrableObjects.size(); kl++) { | 
| 50 | – | integrableObjects[kl]->getVel(aVel); | 
| 51 | – | amass = integrableObjects[kl]->getMass(); | 
| 52 | – |  | 
| 53 | – | for(j=0; j<3; j++) | 
| 54 | – | kinetic += amass*aVel[j]*aVel[j]; | 
| 55 | – |  | 
| 56 | – | if (integrableObjects[kl]->isDirectional()){ | 
| 57 | – |  | 
| 58 | – | integrableObjects[kl]->getJ( aJ ); | 
| 59 | – | integrableObjects[kl]->getI( I ); | 
| 60 | – |  | 
| 61 | – | if (integrableObjects[kl]->isLinear()) { | 
| 62 | – | i = integrableObjects[kl]->linearAxis(); | 
| 63 | – | j = (i+1)%3; | 
| 64 | – | k = (i+2)%3; | 
| 65 | – | kinetic += aJ[j]*aJ[j]/I[j][j] + aJ[k]*aJ[k]/I[k][k]; | 
| 66 | – | } else { | 
| 67 | – | for (j=0; j<3; j++) | 
| 68 | – | kinetic += aJ[j]*aJ[j] / I[j][j]; | 
| 69 | – | } | 
| 70 | – | } | 
| 71 | – | } | 
| 72 | – | #ifdef IS_MPI | 
| 73 | – | MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE, | 
| 74 | – | MPI_SUM, MPI_COMM_WORLD); | 
| 75 | – | kinetic = kinetic_global; | 
| 103 |  | #endif //is_mpi | 
| 77 | – |  | 
| 78 | – | kinetic = kinetic * 0.5 / e_convert; | 
| 104 |  |  | 
| 105 | < | return kinetic; | 
| 105 | > | kinetic = kinetic * 0.5 / OOPSEConstant::energyConvert; | 
| 106 | > |  | 
| 107 | > | return kinetic; | 
| 108 |  | } | 
| 109 |  |  | 
| 110 | < | double Thermo::getPotential(){ | 
| 111 | < |  | 
| 112 | < | double potential_local; | 
| 113 | < | double potential; | 
| 114 | < | int el, nSRI; | 
| 88 | < | Molecule* molecules; | 
| 110 | > | double Thermo::getPotential() { | 
| 111 | > | double potential = 0.0; | 
| 112 | > | Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 113 | > | double potential_local = curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] + | 
| 114 | > | curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] ; | 
| 115 |  |  | 
| 116 | < | molecules = info->molecules; | 
| 91 | < | nSRI = info->n_SRI; | 
| 116 | > | // Get total potential for entire system from MPI. | 
| 117 |  |  | 
| 118 | < | potential_local = 0.0; | 
| 94 | < | potential = 0.0; | 
| 95 | < | potential_local += info->lrPot; | 
| 118 | > | #ifdef IS_MPI | 
| 119 |  |  | 
| 120 | < | for( el=0; el<info->n_mol; el++ ){ | 
| 121 | < | potential_local += molecules[el].getPotential(); | 
| 99 | < | } | 
| 120 | > | MPI_Allreduce(&potential_local, &potential, 1, MPI_DOUBLE, MPI_SUM, | 
| 121 | > | MPI_COMM_WORLD); | 
| 122 |  |  | 
| 101 | – | // Get total potential for entire system from MPI. | 
| 102 | – | #ifdef IS_MPI | 
| 103 | – | MPI_Allreduce(&potential_local,&potential,1,MPI_DOUBLE, | 
| 104 | – | MPI_SUM, MPI_COMM_WORLD); | 
| 123 |  | #else | 
| 124 | < | potential = potential_local; | 
| 124 | > |  | 
| 125 | > | potential = potential_local; | 
| 126 | > |  | 
| 127 |  | #endif // is_mpi | 
| 128 |  |  | 
| 129 | < | return potential; | 
| 129 | > | return potential; | 
| 130 |  | } | 
| 131 |  |  | 
| 132 | < | double Thermo::getTotalE(){ | 
| 132 | > | double Thermo::getTotalE() { | 
| 133 | > | double total; | 
| 134 |  |  | 
| 135 | < | double total; | 
| 136 | < |  | 
| 116 | < | total = this->getKinetic() + this->getPotential(); | 
| 117 | < | return total; | 
| 135 | > | total = this->getKinetic() + this->getPotential(); | 
| 136 | > | return total; | 
| 137 |  | } | 
| 138 |  |  | 
| 139 | < | double Thermo::getTemperature(){ | 
| 140 | < |  | 
| 141 | < | const double kb = 1.9872156E-3; // boltzman's constant in kcal/(mol K) | 
| 142 | < | double temperature; | 
| 124 | < |  | 
| 125 | < | temperature = ( 2.0 * this->getKinetic() ) / ((double)info->ndf * kb ); | 
| 126 | < | return temperature; | 
| 139 | > | double Thermo::getTemperature() { | 
| 140 | > |  | 
| 141 | > | double temperature = ( 2.0 * this->getKinetic() ) / (info_->getNdf()* OOPSEConstant::kb ); | 
| 142 | > | return temperature; | 
| 143 |  | } | 
| 144 |  |  | 
| 145 | < | double Thermo::getVolume() { | 
| 146 | < |  | 
| 147 | < | return info->boxVol; | 
| 145 | > | double Thermo::getVolume() { | 
| 146 | > | Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 147 | > | return curSnapshot->getVolume(); | 
| 148 |  | } | 
| 149 |  |  | 
| 150 |  | double Thermo::getPressure() { | 
| 151 |  |  | 
| 152 | < | // Relies on the calculation of the full molecular pressure tensor | 
| 137 | < |  | 
| 138 | < | const double p_convert = 1.63882576e8; | 
| 139 | < | double press[3][3]; | 
| 140 | < | double pressure; | 
| 152 | > | // Relies on the calculation of the full molecular pressure tensor | 
| 153 |  |  | 
| 142 | – | this->getPressureTensor(press); | 
| 154 |  |  | 
| 155 | < | pressure = p_convert * (press[0][0] + press[1][1] + press[2][2]) / 3.0; | 
| 155 | > | Mat3x3d tensor; | 
| 156 | > | double pressure; | 
| 157 |  |  | 
| 158 | < | return pressure; | 
| 147 | < | } | 
| 158 | > | tensor = getPressureTensor(); | 
| 159 |  |  | 
| 160 | < | double Thermo::getPressureX() { | 
| 160 | > | pressure = OOPSEConstant::pressureConvert * (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0; | 
| 161 |  |  | 
| 162 | < | // Relies on the calculation of the full molecular pressure tensor | 
| 152 | < |  | 
| 153 | < | const double p_convert = 1.63882576e8; | 
| 154 | < | double press[3][3]; | 
| 155 | < | double pressureX; | 
| 156 | < |  | 
| 157 | < | this->getPressureTensor(press); | 
| 158 | < |  | 
| 159 | < | pressureX = p_convert * press[0][0]; | 
| 160 | < |  | 
| 161 | < | return pressureX; | 
| 162 | > | return pressure; | 
| 163 |  | } | 
| 164 |  |  | 
| 165 | < | double Thermo::getPressureY() { | 
| 165 | > | Mat3x3d Thermo::getPressureTensor() { | 
| 166 | > | // returns pressure tensor in units amu*fs^-2*Ang^-1 | 
| 167 | > | // routine derived via viral theorem description in: | 
| 168 | > | // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322 | 
| 169 | > | Mat3x3d pressureTensor; | 
| 170 | > | Mat3x3d p_local(0.0); | 
| 171 | > | Mat3x3d p_global(0.0); | 
| 172 |  |  | 
| 173 | < | // Relies on the calculation of the full molecular pressure tensor | 
| 174 | < |  | 
| 175 | < | const double p_convert = 1.63882576e8; | 
| 176 | < | double press[3][3]; | 
| 177 | < | double pressureY; | 
| 173 | > | SimInfo::MoleculeIterator i; | 
| 174 | > | std::vector<StuntDouble*>::iterator j; | 
| 175 | > | Molecule* mol; | 
| 176 | > | StuntDouble* integrableObject; | 
| 177 | > | for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { | 
| 178 | > | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 179 | > | integrableObject = mol->nextIntegrableObject(j)) { | 
| 180 |  |  | 
| 181 | < | this->getPressureTensor(press); | 
| 181 | > | double mass = integrableObject->getMass(); | 
| 182 | > | Vector3d vcom = integrableObject->getVel(); | 
| 183 | > | p_local += mass * outProduct(vcom, vcom); | 
| 184 | > | } | 
| 185 | > | } | 
| 186 | > |  | 
| 187 | > | #ifdef IS_MPI | 
| 188 | > | MPI_Allreduce(p_local.getArrayPointer(), p_global.getArrayPointer(), 9, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD); | 
| 189 | > | #else | 
| 190 | > | p_global = p_local; | 
| 191 | > | #endif // is_mpi | 
| 192 |  |  | 
| 193 | < | pressureY = p_convert * press[1][1]; | 
| 193 | > | double volume = this->getVolume(); | 
| 194 | > | Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 195 | > | Mat3x3d tau = curSnapshot->statData.getTau(); | 
| 196 |  |  | 
| 197 | < | return pressureY; | 
| 177 | < | } | 
| 197 | > | pressureTensor =  (p_global + OOPSEConstant::energyConvert* tau)/volume; | 
| 198 |  |  | 
| 199 | < | double Thermo::getPressureZ() { | 
| 180 | < |  | 
| 181 | < | // Relies on the calculation of the full molecular pressure tensor | 
| 182 | < |  | 
| 183 | < | const double p_convert = 1.63882576e8; | 
| 184 | < | double press[3][3]; | 
| 185 | < | double pressureZ; | 
| 186 | < |  | 
| 187 | < | this->getPressureTensor(press); | 
| 188 | < |  | 
| 189 | < | pressureZ = p_convert * press[2][2]; | 
| 190 | < |  | 
| 191 | < | return pressureZ; | 
| 199 | > | return pressureTensor; | 
| 200 |  | } | 
| 201 |  |  | 
| 202 | < |  | 
| 203 | < | void Thermo::getPressureTensor(double press[3][3]){ | 
| 204 | < | // returns pressure tensor in units amu*fs^-2*Ang^-1 | 
| 197 | < | // routine derived via viral theorem description in: | 
| 198 | < | // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322 | 
| 199 | < |  | 
| 200 | < | const double e_convert = 4.184e-4; | 
| 201 | < |  | 
| 202 | < | double molmass, volume; | 
| 203 | < | double vcom[3]; | 
| 204 | < | double p_local[9], p_global[9]; | 
| 205 | < | int i, j, k; | 
| 206 | < |  | 
| 207 | < | for (i=0; i < 9; i++) { | 
| 208 | < | p_local[i] = 0.0; | 
| 209 | < | p_global[i] = 0.0; | 
| 210 | < | } | 
| 211 | < |  | 
| 212 | < | // use velocities of integrableObjects and their masses: | 
| 213 | < |  | 
| 214 | < | for (i=0; i < info->integrableObjects.size(); i++) { | 
| 215 | < |  | 
| 216 | < | molmass = info->integrableObjects[i]->getMass(); | 
| 202 | > | void Thermo::saveStat(){ | 
| 203 | > | Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 204 | > | Stats& stat = currSnapshot->statData; | 
| 205 |  |  | 
| 206 | < | info->integrableObjects[i]->getVel(vcom); | 
| 207 | < |  | 
| 208 | < | p_local[0] += molmass * (vcom[0] * vcom[0]); | 
| 209 | < | p_local[1] += molmass * (vcom[0] * vcom[1]); | 
| 210 | < | p_local[2] += molmass * (vcom[0] * vcom[2]); | 
| 211 | < | p_local[3] += molmass * (vcom[1] * vcom[0]); | 
| 224 | < | p_local[4] += molmass * (vcom[1] * vcom[1]); | 
| 225 | < | p_local[5] += molmass * (vcom[1] * vcom[2]); | 
| 226 | < | p_local[6] += molmass * (vcom[2] * vcom[0]); | 
| 227 | < | p_local[7] += molmass * (vcom[2] * vcom[1]); | 
| 228 | < | p_local[8] += molmass * (vcom[2] * vcom[2]); | 
| 206 | > | stat[Stats::KINETIC_ENERGY] = getKinetic(); | 
| 207 | > | stat[Stats::POTENTIAL_ENERGY] = getPotential(); | 
| 208 | > | stat[Stats::TOTAL_ENERGY] = stat[Stats::KINETIC_ENERGY]  + stat[Stats::POTENTIAL_ENERGY] ; | 
| 209 | > | stat[Stats::TEMPERATURE] = getTemperature(); | 
| 210 | > | stat[Stats::PRESSURE] = getPressure(); | 
| 211 | > | stat[Stats::VOLUME] = getVolume(); | 
| 212 |  |  | 
| 213 | < | } | 
| 214 | < |  | 
| 232 | < | // Get total for entire system from MPI. | 
| 233 | < |  | 
| 234 | < | #ifdef IS_MPI | 
| 235 | < | MPI_Allreduce(p_local,p_global,9,MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD); | 
| 236 | < | #else | 
| 237 | < | for (i=0; i<9; i++) { | 
| 238 | < | p_global[i] = p_local[i]; | 
| 239 | < | } | 
| 240 | < | #endif // is_mpi | 
| 241 | < |  | 
| 242 | < | volume = this->getVolume(); | 
| 243 | < |  | 
| 244 | < |  | 
| 245 | < |  | 
| 246 | < | for(i = 0; i < 3; i++) { | 
| 247 | < | for (j = 0; j < 3; j++) { | 
| 248 | < | k = 3*i + j; | 
| 249 | < | press[i][j] = (p_global[k] + info->tau[k]*e_convert) / volume; | 
| 250 | < | } | 
| 251 | < | } | 
| 252 | < | } | 
| 253 | < |  | 
| 254 | < | void Thermo::velocitize() { | 
| 255 | < |  | 
| 256 | < | double aVel[3], aJ[3], I[3][3]; | 
| 257 | < | int i, j, l, m, n, vr, vd; // velocity randomizer loop counters | 
| 258 | < | double vdrift[3]; | 
| 259 | < | double vbar; | 
| 260 | < | const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc. | 
| 261 | < | double av2; | 
| 262 | < | double kebar; | 
| 263 | < | double temperature; | 
| 264 | < | int nobj; | 
| 265 | < |  | 
| 266 | < | if (!info->have_target_temp) { | 
| 267 | < | sprintf( painCave.errMsg, | 
| 268 | < | "You can't resample the velocities without a targetTemp!\n" | 
| 269 | < | ); | 
| 270 | < | painCave.isFatal = 1; | 
| 271 | < | painCave.severity = OOPSE_ERROR; | 
| 272 | < | simError(); | 
| 273 | < | return; | 
| 274 | < | } | 
| 275 | < |  | 
| 276 | < | nobj = info->integrableObjects.size(); | 
| 277 | < |  | 
| 278 | < | temperature   = info->target_temp; | 
| 279 | < |  | 
| 280 | < | kebar = kb * temperature * (double)info->ndfRaw / | 
| 281 | < | ( 2.0 * (double)info->ndf ); | 
| 282 | < |  | 
| 283 | < | for(vr = 0; vr < nobj; vr++){ | 
| 213 | > | /**@todo need refactorying*/ | 
| 214 | > | //Conserved Quantity is set by integrator and time is set by setTime | 
| 215 |  |  | 
| 285 | – | // uses equipartition theory to solve for vbar in angstrom/fs | 
| 286 | – |  | 
| 287 | – | av2 = 2.0 * kebar / info->integrableObjects[vr]->getMass(); | 
| 288 | – | vbar = sqrt( av2 ); | 
| 289 | – |  | 
| 290 | – | // picks random velocities from a gaussian distribution | 
| 291 | – | // centered on vbar | 
| 292 | – |  | 
| 293 | – | for (j=0; j<3; j++) | 
| 294 | – | aVel[j] = vbar * gaussStream->getGaussian(); | 
| 295 | – |  | 
| 296 | – | info->integrableObjects[vr]->setVel( aVel ); | 
| 297 | – |  | 
| 298 | – | if(info->integrableObjects[vr]->isDirectional()){ | 
| 299 | – |  | 
| 300 | – | info->integrableObjects[vr]->getI( I ); | 
| 301 | – |  | 
| 302 | – | if (info->integrableObjects[vr]->isLinear()) { | 
| 303 | – |  | 
| 304 | – | l= info->integrableObjects[vr]->linearAxis(); | 
| 305 | – | m = (l+1)%3; | 
| 306 | – | n = (l+2)%3; | 
| 307 | – |  | 
| 308 | – | aJ[l] = 0.0; | 
| 309 | – | vbar = sqrt( 2.0 * kebar * I[m][m] ); | 
| 310 | – | aJ[m] = vbar * gaussStream->getGaussian(); | 
| 311 | – | vbar = sqrt( 2.0 * kebar * I[n][n] ); | 
| 312 | – | aJ[n] = vbar * gaussStream->getGaussian(); | 
| 313 | – |  | 
| 314 | – | } else { | 
| 315 | – | for (j = 0 ; j < 3; j++) { | 
| 316 | – | vbar = sqrt( 2.0 * kebar * I[j][j] ); | 
| 317 | – | aJ[j] = vbar * gaussStream->getGaussian(); | 
| 318 | – | } | 
| 319 | – | } // else isLinear | 
| 320 | – |  | 
| 321 | – | info->integrableObjects[vr]->setJ( aJ ); | 
| 322 | – |  | 
| 323 | – | }//isDirectional | 
| 324 | – |  | 
| 325 | – | } | 
| 326 | – |  | 
| 327 | – | // Get the Center of Mass drift velocity. | 
| 328 | – |  | 
| 329 | – | getCOMVel(vdrift); | 
| 330 | – |  | 
| 331 | – | //  Corrects for the center of mass drift. | 
| 332 | – | // sums all the momentum and divides by total mass. | 
| 333 | – |  | 
| 334 | – | for(vd = 0; vd < nobj; vd++){ | 
| 335 | – |  | 
| 336 | – | info->integrableObjects[vd]->getVel(aVel); | 
| 337 | – |  | 
| 338 | – | for (j=0; j < 3; j++) | 
| 339 | – | aVel[j] -= vdrift[j]; | 
| 340 | – |  | 
| 341 | – | info->integrableObjects[vd]->setVel( aVel ); | 
| 342 | – | } | 
| 343 | – |  | 
| 216 |  | } | 
| 217 |  |  | 
| 218 | < | void Thermo::getCOMVel(double vdrift[3]){ | 
| 347 | < |  | 
| 348 | < | double mtot, mtot_local; | 
| 349 | < | double aVel[3], amass; | 
| 350 | < | double vdrift_local[3]; | 
| 351 | < | int vd, j; | 
| 352 | < | int nobj; | 
| 353 | < |  | 
| 354 | < | nobj   = info->integrableObjects.size(); | 
| 355 | < |  | 
| 356 | < | mtot_local = 0.0; | 
| 357 | < | vdrift_local[0] = 0.0; | 
| 358 | < | vdrift_local[1] = 0.0; | 
| 359 | < | vdrift_local[2] = 0.0; | 
| 360 | < |  | 
| 361 | < | for(vd = 0; vd < nobj; vd++){ | 
| 362 | < |  | 
| 363 | < | amass = info->integrableObjects[vd]->getMass(); | 
| 364 | < | info->integrableObjects[vd]->getVel( aVel ); | 
| 365 | < |  | 
| 366 | < | for(j = 0; j < 3; j++) | 
| 367 | < | vdrift_local[j] += aVel[j] * amass; | 
| 368 | < |  | 
| 369 | < | mtot_local += amass; | 
| 370 | < | } | 
| 371 | < |  | 
| 372 | < | #ifdef IS_MPI | 
| 373 | < | MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 374 | < | MPI_Allreduce(vdrift_local,vdrift,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 375 | < | #else | 
| 376 | < | mtot = mtot_local; | 
| 377 | < | for(vd = 0; vd < 3; vd++) { | 
| 378 | < | vdrift[vd] = vdrift_local[vd]; | 
| 379 | < | } | 
| 380 | < | #endif | 
| 381 | < |  | 
| 382 | < | for (vd = 0; vd < 3; vd++) { | 
| 383 | < | vdrift[vd] = vdrift[vd] / mtot; | 
| 384 | < | } | 
| 385 | < |  | 
| 386 | < | } | 
| 387 | < |  | 
| 388 | < | void Thermo::getCOM(double COM[3]){ | 
| 389 | < |  | 
| 390 | < | double mtot, mtot_local; | 
| 391 | < | double aPos[3], amass; | 
| 392 | < | double COM_local[3]; | 
| 393 | < | int i, j; | 
| 394 | < | int nobj; | 
| 395 | < |  | 
| 396 | < | mtot_local = 0.0; | 
| 397 | < | COM_local[0] = 0.0; | 
| 398 | < | COM_local[1] = 0.0; | 
| 399 | < | COM_local[2] = 0.0; | 
| 400 | < |  | 
| 401 | < | nobj = info->integrableObjects.size(); | 
| 402 | < | for(i = 0; i < nobj; i++){ | 
| 403 | < |  | 
| 404 | < | amass = info->integrableObjects[i]->getMass(); | 
| 405 | < | info->integrableObjects[i]->getPos( aPos ); | 
| 406 | < |  | 
| 407 | < | for(j = 0; j < 3; j++) | 
| 408 | < | COM_local[j] += aPos[j] * amass; | 
| 409 | < |  | 
| 410 | < | mtot_local += amass; | 
| 411 | < | } | 
| 412 | < |  | 
| 413 | < | #ifdef IS_MPI | 
| 414 | < | MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 415 | < | MPI_Allreduce(COM_local,COM,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 416 | < | #else | 
| 417 | < | mtot = mtot_local; | 
| 418 | < | for(i = 0; i < 3; i++) { | 
| 419 | < | COM[i] = COM_local[i]; | 
| 420 | < | } | 
| 421 | < | #endif | 
| 422 | < |  | 
| 423 | < | for (i = 0; i < 3; i++) { | 
| 424 | < | COM[i] = COM[i] / mtot; | 
| 425 | < | } | 
| 426 | < | } | 
| 427 | < |  | 
| 428 | < | void Thermo::removeCOMdrift() { | 
| 429 | < | double vdrift[3], aVel[3]; | 
| 430 | < | int vd, j, nobj; | 
| 431 | < |  | 
| 432 | < | nobj = info->integrableObjects.size(); | 
| 433 | < |  | 
| 434 | < | // Get the Center of Mass drift velocity. | 
| 435 | < |  | 
| 436 | < | getCOMVel(vdrift); | 
| 437 | < |  | 
| 438 | < | //  Corrects for the center of mass drift. | 
| 439 | < | // sums all the momentum and divides by total mass. | 
| 440 | < |  | 
| 441 | < | for(vd = 0; vd < nobj; vd++){ | 
| 442 | < |  | 
| 443 | < | info->integrableObjects[vd]->getVel(aVel); | 
| 444 | < |  | 
| 445 | < | for (j=0; j < 3; j++) | 
| 446 | < | aVel[j] -= vdrift[j]; | 
| 447 | < |  | 
| 448 | < | info->integrableObjects[vd]->setVel( aVel ); | 
| 449 | < | } | 
| 450 | < | } | 
| 218 | > | } //end namespace oopse |