| 1 | /* | 
| 2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Redistributions of source code must retain the above copyright | 
| 10 | *    notice, this list of conditions and the following disclaimer. | 
| 11 | * | 
| 12 | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | *    notice, this list of conditions and the following disclaimer in the | 
| 14 | *    documentation and/or other materials provided with the | 
| 15 | *    distribution. | 
| 16 | * | 
| 17 | * This software is provided "AS IS," without a warranty of any | 
| 18 | * kind. All express or implied conditions, representations and | 
| 19 | * warranties, including any implied warranty of merchantability, | 
| 20 | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 | * be liable for any damages suffered by licensee as a result of | 
| 23 | * using, modifying or distributing the software or its | 
| 24 | * derivatives. In no event will the University of Notre Dame or its | 
| 25 | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 | * direct, indirect, special, consequential, incidental or punitive | 
| 27 | * damages, however caused and regardless of the theory of liability, | 
| 28 | * arising out of the use of or inability to use software, even if the | 
| 29 | * University of Notre Dame has been advised of the possibility of | 
| 30 | * such damages. | 
| 31 | * | 
| 32 | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | * research, please cite the appropriate papers when you publish your | 
| 34 | * work.  Good starting points are: | 
| 35 | * | 
| 36 | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 | * [4]  Vardeman & Gezelter, in progress (2009). | 
| 40 | */ | 
| 41 |  | 
| 42 | #include <math.h> | 
| 43 | #include <iostream> | 
| 44 |  | 
| 45 | #ifdef IS_MPI | 
| 46 | #include <mpi.h> | 
| 47 | #endif //is_mpi | 
| 48 |  | 
| 49 | #include "brains/Thermo.hpp" | 
| 50 | #include "primitives/Molecule.hpp" | 
| 51 | #include "utils/simError.h" | 
| 52 | #include "utils/PhysicalConstants.hpp" | 
| 53 |  | 
| 54 | namespace OpenMD { | 
| 55 |  | 
| 56 | RealType Thermo::getKinetic() { | 
| 57 | SimInfo::MoleculeIterator miter; | 
| 58 | std::vector<StuntDouble*>::iterator iiter; | 
| 59 | Molecule* mol; | 
| 60 | StuntDouble* integrableObject; | 
| 61 | Vector3d vel; | 
| 62 | Vector3d angMom; | 
| 63 | Mat3x3d I; | 
| 64 | int i; | 
| 65 | int j; | 
| 66 | int k; | 
| 67 | RealType mass; | 
| 68 | RealType kinetic = 0.0; | 
| 69 | RealType kinetic_global = 0.0; | 
| 70 |  | 
| 71 | for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) { | 
| 72 | for (integrableObject = mol->beginIntegrableObject(iiter); integrableObject != NULL; | 
| 73 | integrableObject = mol->nextIntegrableObject(iiter)) { | 
| 74 |  | 
| 75 | mass = integrableObject->getMass(); | 
| 76 | vel = integrableObject->getVel(); | 
| 77 |  | 
| 78 | kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]); | 
| 79 |  | 
| 80 | if (integrableObject->isDirectional()) { | 
| 81 | angMom = integrableObject->getJ(); | 
| 82 | I = integrableObject->getI(); | 
| 83 |  | 
| 84 | if (integrableObject->isLinear()) { | 
| 85 | i = integrableObject->linearAxis(); | 
| 86 | j = (i + 1) % 3; | 
| 87 | k = (i + 2) % 3; | 
| 88 | kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k); | 
| 89 | } else { | 
| 90 | kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1) | 
| 91 | + angMom[2]*angMom[2]/I(2, 2); | 
| 92 | } | 
| 93 | } | 
| 94 |  | 
| 95 | } | 
| 96 | } | 
| 97 |  | 
| 98 | #ifdef IS_MPI | 
| 99 |  | 
| 100 | MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_REALTYPE, MPI_SUM, | 
| 101 | MPI_COMM_WORLD); | 
| 102 | kinetic = kinetic_global; | 
| 103 |  | 
| 104 | #endif //is_mpi | 
| 105 |  | 
| 106 | kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert; | 
| 107 |  | 
| 108 | return kinetic; | 
| 109 | } | 
| 110 |  | 
| 111 | RealType Thermo::getPotential() { | 
| 112 | RealType potential = 0.0; | 
| 113 | Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 114 | RealType shortRangePot_local =  curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] ; | 
| 115 |  | 
| 116 | // Get total potential for entire system from MPI. | 
| 117 |  | 
| 118 | #ifdef IS_MPI | 
| 119 |  | 
| 120 | MPI_Allreduce(&shortRangePot_local, &potential, 1, MPI_REALTYPE, MPI_SUM, | 
| 121 | MPI_COMM_WORLD); | 
| 122 | potential += curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL]; | 
| 123 |  | 
| 124 | #else | 
| 125 |  | 
| 126 | potential = shortRangePot_local + curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL]; | 
| 127 |  | 
| 128 | #endif // is_mpi | 
| 129 |  | 
| 130 | return potential; | 
| 131 | } | 
| 132 |  | 
| 133 | RealType Thermo::getTotalE() { | 
| 134 | RealType total; | 
| 135 |  | 
| 136 | total = this->getKinetic() + this->getPotential(); | 
| 137 | return total; | 
| 138 | } | 
| 139 |  | 
| 140 | RealType Thermo::getTemperature() { | 
| 141 |  | 
| 142 | RealType temperature = ( 2.0 * this->getKinetic() ) / (info_->getNdf()* PhysicalConstants::kb ); | 
| 143 | return temperature; | 
| 144 | } | 
| 145 |  | 
| 146 | RealType Thermo::getVolume() { | 
| 147 | Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 148 | return curSnapshot->getVolume(); | 
| 149 | } | 
| 150 |  | 
| 151 | RealType Thermo::getPressure() { | 
| 152 |  | 
| 153 | // Relies on the calculation of the full molecular pressure tensor | 
| 154 |  | 
| 155 |  | 
| 156 | Mat3x3d tensor; | 
| 157 | RealType pressure; | 
| 158 |  | 
| 159 | tensor = getPressureTensor(); | 
| 160 |  | 
| 161 | pressure = PhysicalConstants::pressureConvert * (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0; | 
| 162 |  | 
| 163 | return pressure; | 
| 164 | } | 
| 165 |  | 
| 166 | RealType Thermo::getPressure(int direction) { | 
| 167 |  | 
| 168 | // Relies on the calculation of the full molecular pressure tensor | 
| 169 |  | 
| 170 |  | 
| 171 | Mat3x3d tensor; | 
| 172 | RealType pressure; | 
| 173 |  | 
| 174 | tensor = getPressureTensor(); | 
| 175 |  | 
| 176 | pressure = PhysicalConstants::pressureConvert * tensor(direction, direction); | 
| 177 |  | 
| 178 | return pressure; | 
| 179 | } | 
| 180 |  | 
| 181 | Mat3x3d Thermo::getPressureTensor() { | 
| 182 | // returns pressure tensor in units amu*fs^-2*Ang^-1 | 
| 183 | // routine derived via viral theorem description in: | 
| 184 | // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322 | 
| 185 | Mat3x3d pressureTensor; | 
| 186 | Mat3x3d p_local(0.0); | 
| 187 | Mat3x3d p_global(0.0); | 
| 188 |  | 
| 189 | SimInfo::MoleculeIterator i; | 
| 190 | std::vector<StuntDouble*>::iterator j; | 
| 191 | Molecule* mol; | 
| 192 | StuntDouble* integrableObject; | 
| 193 | for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { | 
| 194 | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 195 | integrableObject = mol->nextIntegrableObject(j)) { | 
| 196 |  | 
| 197 | RealType mass = integrableObject->getMass(); | 
| 198 | Vector3d vcom = integrableObject->getVel(); | 
| 199 | p_local += mass * outProduct(vcom, vcom); | 
| 200 | } | 
| 201 | } | 
| 202 |  | 
| 203 | #ifdef IS_MPI | 
| 204 | MPI_Allreduce(p_local.getArrayPointer(), p_global.getArrayPointer(), 9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 205 | #else | 
| 206 | p_global = p_local; | 
| 207 | #endif // is_mpi | 
| 208 |  | 
| 209 | RealType volume = this->getVolume(); | 
| 210 | Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 211 | Mat3x3d tau = curSnapshot->statData.getTau(); | 
| 212 |  | 
| 213 | pressureTensor =  (p_global + PhysicalConstants::energyConvert* tau)/volume; | 
| 214 |  | 
| 215 | return pressureTensor; | 
| 216 | } | 
| 217 |  | 
| 218 |  | 
| 219 | void Thermo::saveStat(){ | 
| 220 | Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 221 | Stats& stat = currSnapshot->statData; | 
| 222 |  | 
| 223 | stat[Stats::KINETIC_ENERGY] = getKinetic(); | 
| 224 | stat[Stats::POTENTIAL_ENERGY] = getPotential(); | 
| 225 | stat[Stats::TOTAL_ENERGY] = stat[Stats::KINETIC_ENERGY]  + stat[Stats::POTENTIAL_ENERGY] ; | 
| 226 | stat[Stats::TEMPERATURE] = getTemperature(); | 
| 227 | stat[Stats::PRESSURE] = getPressure(); | 
| 228 | stat[Stats::VOLUME] = getVolume(); | 
| 229 |  | 
| 230 | Mat3x3d tensor =getPressureTensor(); | 
| 231 | stat[Stats::PRESSURE_TENSOR_XX] = tensor(0, 0); | 
| 232 | stat[Stats::PRESSURE_TENSOR_XY] = tensor(0, 1); | 
| 233 | stat[Stats::PRESSURE_TENSOR_XZ] = tensor(0, 2); | 
| 234 | stat[Stats::PRESSURE_TENSOR_YX] = tensor(1, 0); | 
| 235 | stat[Stats::PRESSURE_TENSOR_YY] = tensor(1, 1); | 
| 236 | stat[Stats::PRESSURE_TENSOR_YZ] = tensor(1, 2); | 
| 237 | stat[Stats::PRESSURE_TENSOR_ZX] = tensor(2, 0); | 
| 238 | stat[Stats::PRESSURE_TENSOR_ZY] = tensor(2, 1); | 
| 239 | stat[Stats::PRESSURE_TENSOR_ZZ] = tensor(2, 2); | 
| 240 | Vector3d GKappa_t = getThermalHelfand(); | 
| 241 | stat[Stats::THERMAL_HELFANDMOMENT_X] = GKappa_t.x(); | 
| 242 | stat[Stats::THERMAL_HELFANDMOMENT_Y] = GKappa_t.y(); | 
| 243 | stat[Stats::THERMAL_HELFANDMOMENT_Z] = GKappa_t.z(); | 
| 244 |  | 
| 245 | Globals* simParams = info_->getSimParams(); | 
| 246 |  | 
| 247 | if (simParams->haveTaggedAtomPair() && | 
| 248 | simParams->havePrintTaggedPairDistance()) { | 
| 249 | if ( simParams->getPrintTaggedPairDistance()) { | 
| 250 |  | 
| 251 | std::pair<int, int> tap = simParams->getTaggedAtomPair(); | 
| 252 | Vector3d pos1, pos2, rab; | 
| 253 |  | 
| 254 | #ifdef IS_MPI | 
| 255 | std::cerr << "tap = " << tap.first << "  " << tap.second << std::endl; | 
| 256 |  | 
| 257 | int mol1 = info_->getGlobalMolMembership(tap.first); | 
| 258 | int mol2 = info_->getGlobalMolMembership(tap.second); | 
| 259 | std::cerr << "mols = " << mol1 << " " << mol2 << std::endl; | 
| 260 |  | 
| 261 | int proc1 = info_->getMolToProc(mol1); | 
| 262 | int proc2 = info_->getMolToProc(mol2); | 
| 263 |  | 
| 264 | std::cerr << " procs = " << proc1 << " " <<proc2 <<std::endl; | 
| 265 |  | 
| 266 | RealType data[3]; | 
| 267 | if (proc1 == worldRank) { | 
| 268 | StuntDouble* sd1 = info_->getIOIndexToIntegrableObject(tap.first); | 
| 269 | std::cerr << " on proc " << proc1 << ", sd1 has global index= " << sd1->getGlobalIndex() << std::endl; | 
| 270 | pos1 = sd1->getPos(); | 
| 271 | data[0] = pos1.x(); | 
| 272 | data[1] = pos1.y(); | 
| 273 | data[2] = pos1.z(); | 
| 274 | MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD); | 
| 275 | } else { | 
| 276 | MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD); | 
| 277 | pos1 = Vector3d(data); | 
| 278 | } | 
| 279 |  | 
| 280 |  | 
| 281 | if (proc2 == worldRank) { | 
| 282 | StuntDouble* sd2 = info_->getIOIndexToIntegrableObject(tap.second); | 
| 283 | std::cerr << " on proc " << proc2 << ", sd2 has global index= " << sd2->getGlobalIndex() << std::endl; | 
| 284 | pos2 = sd2->getPos(); | 
| 285 | data[0] = pos2.x(); | 
| 286 | data[1] = pos2.y(); | 
| 287 | data[2] = pos2.z(); | 
| 288 | MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD); | 
| 289 | } else { | 
| 290 | MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD); | 
| 291 | pos2 = Vector3d(data); | 
| 292 | } | 
| 293 | #else | 
| 294 | StuntDouble* at1 = info_->getIOIndexToIntegrableObject(tap.first); | 
| 295 | StuntDouble* at2 = info_->getIOIndexToIntegrableObject(tap.second); | 
| 296 | pos1 = at1->getPos(); | 
| 297 | pos2 = at2->getPos(); | 
| 298 | #endif | 
| 299 | rab = pos2 - pos1; | 
| 300 | currSnapshot->wrapVector(rab); | 
| 301 | stat[Stats::TAGGED_PAIR_DISTANCE] =  rab.length(); | 
| 302 | } | 
| 303 | } | 
| 304 |  | 
| 305 | /**@todo need refactorying*/ | 
| 306 | //Conserved Quantity is set by integrator and time is set by setTime | 
| 307 |  | 
| 308 | } | 
| 309 |  | 
| 310 |  | 
| 311 |  | 
| 312 | Vector3d Thermo::getBoxDipole() { | 
| 313 | Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 314 | SimInfo::MoleculeIterator miter; | 
| 315 | std::vector<Atom*>::iterator aiter; | 
| 316 | Molecule* mol; | 
| 317 | Atom* atom; | 
| 318 | RealType charge; | 
| 319 | RealType moment(0.0); | 
| 320 | Vector3d ri(0.0); | 
| 321 | Vector3d dipoleVector(0.0); | 
| 322 | Vector3d nPos(0.0); | 
| 323 | Vector3d pPos(0.0); | 
| 324 | RealType nChg(0.0); | 
| 325 | RealType pChg(0.0); | 
| 326 | int nCount = 0; | 
| 327 | int pCount = 0; | 
| 328 |  | 
| 329 | RealType chargeToC = 1.60217733e-19; | 
| 330 | RealType angstromToM = 1.0e-10;    RealType debyeToCm = 3.33564095198e-30; | 
| 331 |  | 
| 332 | for (mol = info_->beginMolecule(miter); mol != NULL; | 
| 333 | mol = info_->nextMolecule(miter)) { | 
| 334 |  | 
| 335 | for (atom = mol->beginAtom(aiter); atom != NULL; | 
| 336 | atom = mol->nextAtom(aiter)) { | 
| 337 |  | 
| 338 | if (atom->isCharge() ) { | 
| 339 | charge = 0.0; | 
| 340 | GenericData* data = atom->getAtomType()->getPropertyByName("Charge"); | 
| 341 | if (data != NULL) { | 
| 342 |  | 
| 343 | charge = (dynamic_cast<DoubleGenericData*>(data))->getData(); | 
| 344 | charge *= chargeToC; | 
| 345 |  | 
| 346 | ri = atom->getPos(); | 
| 347 | currSnapshot->wrapVector(ri); | 
| 348 | ri *= angstromToM; | 
| 349 |  | 
| 350 | if (charge < 0.0) { | 
| 351 | nPos += ri; | 
| 352 | nChg -= charge; | 
| 353 | nCount++; | 
| 354 | } else if (charge > 0.0) { | 
| 355 | pPos += ri; | 
| 356 | pChg += charge; | 
| 357 | pCount++; | 
| 358 | } | 
| 359 | } | 
| 360 | } | 
| 361 |  | 
| 362 | if (atom->isDipole() ) { | 
| 363 | Vector3d u_i = atom->getElectroFrame().getColumn(2); | 
| 364 | GenericData* data = dynamic_cast<DirectionalAtomType*>(atom->getAtomType())->getPropertyByName("Dipole"); | 
| 365 | if (data != NULL) { | 
| 366 | moment = (dynamic_cast<DoubleGenericData*>(data))->getData(); | 
| 367 |  | 
| 368 | moment *= debyeToCm; | 
| 369 | dipoleVector += u_i * moment; | 
| 370 | } | 
| 371 | } | 
| 372 | } | 
| 373 | } | 
| 374 |  | 
| 375 |  | 
| 376 | #ifdef IS_MPI | 
| 377 | RealType pChg_global, nChg_global; | 
| 378 | int pCount_global, nCount_global; | 
| 379 | Vector3d pPos_global, nPos_global, dipVec_global; | 
| 380 |  | 
| 381 | MPI_Allreduce(&pChg, &pChg_global, 1, MPI_REALTYPE, MPI_SUM, | 
| 382 | MPI_COMM_WORLD); | 
| 383 | pChg = pChg_global; | 
| 384 | MPI_Allreduce(&nChg, &nChg_global, 1, MPI_REALTYPE, MPI_SUM, | 
| 385 | MPI_COMM_WORLD); | 
| 386 | nChg = nChg_global; | 
| 387 | MPI_Allreduce(&pCount, &pCount_global, 1, MPI_INTEGER, MPI_SUM, | 
| 388 | MPI_COMM_WORLD); | 
| 389 | pCount = pCount_global; | 
| 390 | MPI_Allreduce(&nCount, &nCount_global, 1, MPI_INTEGER, MPI_SUM, | 
| 391 | MPI_COMM_WORLD); | 
| 392 | nCount = nCount_global; | 
| 393 | MPI_Allreduce(pPos.getArrayPointer(), pPos_global.getArrayPointer(), 3, | 
| 394 | MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 395 | pPos = pPos_global; | 
| 396 | MPI_Allreduce(nPos.getArrayPointer(), nPos_global.getArrayPointer(), 3, | 
| 397 | MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 398 | nPos = nPos_global; | 
| 399 | MPI_Allreduce(dipoleVector.getArrayPointer(), | 
| 400 | dipVec_global.getArrayPointer(), 3, | 
| 401 | MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 402 | dipoleVector = dipVec_global; | 
| 403 | #endif //is_mpi | 
| 404 |  | 
| 405 | // first load the accumulated dipole moment (if dipoles were present) | 
| 406 | Vector3d boxDipole = dipoleVector; | 
| 407 | // now include the dipole moment due to charges | 
| 408 | // use the lesser of the positive and negative charge totals | 
| 409 | RealType chg_value = nChg <= pChg ? nChg : pChg; | 
| 410 |  | 
| 411 | // find the average positions | 
| 412 | if (pCount > 0 && nCount > 0 ) { | 
| 413 | pPos /= pCount; | 
| 414 | nPos /= nCount; | 
| 415 | } | 
| 416 |  | 
| 417 | // dipole is from the negative to the positive (physics notation) | 
| 418 | boxDipole += (pPos - nPos) * chg_value; | 
| 419 |  | 
| 420 | return boxDipole; | 
| 421 | } | 
| 422 |  | 
| 423 | Vector3d Thermo::getThermalHelfand() { | 
| 424 | Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 425 | SimInfo::MoleculeIterator miter; | 
| 426 | std::vector<Atom*>::iterator aiter; | 
| 427 | Molecule* mol; | 
| 428 | Atom* atom; | 
| 429 | RealType mass; | 
| 430 | Vector3d velocity; | 
| 431 | Vector3d x_a; | 
| 432 | RealType kinetic; | 
| 433 | RealType potential; | 
| 434 | RealType eatom; | 
| 435 | RealType AvgE_a_ = 0; | 
| 436 | Vector3d GKappa_t = V3Zero; | 
| 437 | Vector3d ThermalHelfandMoment; | 
| 438 |  | 
| 439 | for (mol = info_->beginMolecule(miter); mol != NULL; | 
| 440 | mol = info_->nextMolecule(miter)) { | 
| 441 |  | 
| 442 | for (atom = mol->beginAtom(aiter); atom != NULL; | 
| 443 | atom = mol->nextAtom(aiter)) { | 
| 444 |  | 
| 445 | mass = atom->getMass(); | 
| 446 | velocity = atom->getVel(); | 
| 447 | kinetic = mass * (velocity[0]*velocity[0] + velocity[1]*velocity[1] + | 
| 448 | velocity[2]*velocity[2]) / PhysicalConstants::energyConvert; | 
| 449 | potential =  atom->getParticlePot(); | 
| 450 | eatom += (kinetic + potential)/2.0; | 
| 451 | } | 
| 452 | } | 
| 453 |  | 
| 454 | int natoms = info_->getNGlobalAtoms(); | 
| 455 | #ifdef IS_MPI | 
| 456 |  | 
| 457 | MPI_Allreduce(&eatom, &AvgE_a_, 1, MPI_REALTYPE, MPI_SUM, | 
| 458 | MPI_COMM_WORLD); | 
| 459 | #else | 
| 460 | AvgE_a_ = eatom; | 
| 461 | #endif | 
| 462 | AvgE_a_ = AvgE_a_/RealType(natoms); | 
| 463 |  | 
| 464 | for (mol = info_->beginMolecule(miter); mol != NULL; | 
| 465 | mol = info_->nextMolecule(miter)) { | 
| 466 |  | 
| 467 | for (atom = mol->beginAtom(aiter); atom != NULL; | 
| 468 | atom = mol->nextAtom(aiter)) { | 
| 469 |  | 
| 470 | /* We think that x_a is relative to the total box and should be a wrapped coordinate */ | 
| 471 | x_a = atom->getPos(); | 
| 472 | currSnapshot->wrapVector(x_a); | 
| 473 | potential =  atom->getParticlePot(); | 
| 474 | velocity = atom->getVel(); | 
| 475 | kinetic = mass * (velocity[0]*velocity[0] + velocity[1]*velocity[1] + | 
| 476 | velocity[2]*velocity[2]) / PhysicalConstants::energyConvert; | 
| 477 | eatom += (kinetic + potential)/2.0; | 
| 478 | GKappa_t += x_a*(eatom-AvgE_a_); | 
| 479 | } | 
| 480 | } | 
| 481 | #ifdef IS_MPI | 
| 482 | MPI_Allreduce(GKappa_t.getArrayPointer(), ThermalHelfandMoment.getArrayPointer(), 3, | 
| 483 | MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 484 | #else | 
| 485 | ThermalHelfandMoment = GKappa_t; | 
| 486 | #endif | 
| 487 | return ThermalHelfandMoment; | 
| 488 |  | 
| 489 | } | 
| 490 |  | 
| 491 |  | 
| 492 |  | 
| 493 | } //end namespace OpenMD |