| 1 |
gezelter |
1862 |
/* |
| 2 |
|
|
* Copyright (c) 2013 The University of Notre Dame. All Rights Reserved. |
| 3 |
|
|
* |
| 4 |
|
|
* The University of Notre Dame grants you ("Licensee") a |
| 5 |
|
|
* non-exclusive, royalty free, license to use, modify and |
| 6 |
|
|
* redistribute this software in source and binary code form, provided |
| 7 |
|
|
* that the following conditions are met: |
| 8 |
|
|
* |
| 9 |
|
|
* 1. Redistributions of source code must retain the above copyright |
| 10 |
|
|
* notice, this list of conditions and the following disclaimer. |
| 11 |
|
|
* |
| 12 |
|
|
* 2. Redistributions in binary form must reproduce the above copyright |
| 13 |
|
|
* notice, this list of conditions and the following disclaimer in the |
| 14 |
|
|
* documentation and/or other materials provided with the |
| 15 |
|
|
* distribution. |
| 16 |
|
|
* |
| 17 |
|
|
* This software is provided "AS IS," without a warranty of any |
| 18 |
|
|
* kind. All express or implied conditions, representations and |
| 19 |
|
|
* warranties, including any implied warranty of merchantability, |
| 20 |
|
|
* fitness for a particular purpose or non-infringement, are hereby |
| 21 |
|
|
* excluded. The University of Notre Dame and its licensors shall not |
| 22 |
|
|
* be liable for any damages suffered by licensee as a result of |
| 23 |
|
|
* using, modifying or distributing the software or its |
| 24 |
|
|
* derivatives. In no event will the University of Notre Dame or its |
| 25 |
|
|
* licensors be liable for any lost revenue, profit or data, or for |
| 26 |
|
|
* direct, indirect, special, consequential, incidental or punitive |
| 27 |
|
|
* damages, however caused and regardless of the theory of liability, |
| 28 |
|
|
* arising out of the use of or inability to use software, even if the |
| 29 |
|
|
* University of Notre Dame has been advised of the possibility of |
| 30 |
|
|
* such damages. |
| 31 |
|
|
* |
| 32 |
|
|
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
| 33 |
|
|
* research, please cite the appropriate papers when you publish your |
| 34 |
|
|
* work. Good starting points are: |
| 35 |
|
|
* |
| 36 |
|
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
| 37 |
|
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
| 38 |
|
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
| 39 |
|
|
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
| 40 |
|
|
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
| 41 |
|
|
*/ |
| 42 |
|
|
|
| 43 |
|
|
#include "clusters/Decahedron.hpp" |
| 44 |
|
|
|
| 45 |
|
|
using namespace std; |
| 46 |
|
|
|
| 47 |
|
|
namespace OpenMD { |
| 48 |
|
|
|
| 49 |
|
|
Decahedron::Decahedron(int columnAtoms, int shells, int twinAtoms) : |
| 50 |
|
|
N_(columnAtoms), M_(shells), K_(twinAtoms) { |
| 51 |
|
|
|
| 52 |
|
|
Basis.clear(); |
| 53 |
|
|
Points.clear(); |
| 54 |
|
|
|
| 55 |
|
|
// |
| 56 |
|
|
// Initialize Basis vectors. |
| 57 |
|
|
// |
| 58 |
|
|
const RealType phi = 2.0 * M_PI / 5.0; // 72 degrees |
| 59 |
|
|
const RealType r3o2 = 0.5 * sqrt(3.0); |
| 60 |
|
|
|
| 61 |
|
|
Basis.push_back( Vector3d( r3o2*cos(0.0*phi), r3o2*sin(0.0*phi), 0.0 )); |
| 62 |
|
|
Basis.push_back( Vector3d( r3o2*cos(1.0*phi), r3o2*sin(1.0*phi), 0.0 )); |
| 63 |
|
|
Basis.push_back( Vector3d( r3o2*cos(2.0*phi), r3o2*sin(2.0*phi), 0.0 )); |
| 64 |
|
|
Basis.push_back( Vector3d( r3o2*cos(3.0*phi), r3o2*sin(3.0*phi), 0.0 )); |
| 65 |
|
|
Basis.push_back( Vector3d( r3o2*cos(4.0*phi), r3o2*sin(4.0*phi), 0.0 )); |
| 66 |
|
|
} |
| 67 |
|
|
|
| 68 |
|
|
Decahedron::~Decahedron() { |
| 69 |
|
|
Basis.clear(); |
| 70 |
|
|
Points.clear(); |
| 71 |
|
|
} |
| 72 |
|
|
|
| 73 |
|
|
vector<Vector3d> Decahedron::getPoints() { |
| 74 |
|
|
// Generate central column of Decahedron |
| 75 |
|
|
|
| 76 |
|
|
for (int i = 0; i < N_; i++) { |
| 77 |
|
|
Points.push_back( Vector3d( 0.0, 0.0, RealType(i) - 0.5 * (N_ - 1) ) ); |
| 78 |
|
|
} |
| 79 |
|
|
|
| 80 |
|
|
for (int i = 1; i < M_ + 1; i++) { |
| 81 |
|
|
// generate the shells of the decahedron: |
| 82 |
|
|
|
| 83 |
|
|
vector<Vector3d> ring; |
| 84 |
|
|
|
| 85 |
|
|
if (i > K_ - 1) { |
| 86 |
|
|
ring = truncatedRing(i, i - K_ + 1); |
| 87 |
|
|
} else { |
| 88 |
|
|
ring = truncatedRing(i, 0); |
| 89 |
|
|
} |
| 90 |
|
|
|
| 91 |
|
|
// shift the rings in the z-direction (along the shell) |
| 92 |
|
|
|
| 93 |
|
|
for (int j = 0; j < N_ - i; j++) { |
| 94 |
|
|
Vector3d shift = Vector3d(0, 0, -0.5 * RealType((N_-i)-1) + RealType(j)); |
| 95 |
|
|
|
| 96 |
|
|
for (vector<Vector3d>::iterator k = ring.begin(); |
| 97 |
|
|
k != ring.end(); ++k) { |
| 98 |
|
|
|
| 99 |
|
|
Points.push_back( (*k) + shift); |
| 100 |
|
|
|
| 101 |
|
|
} |
| 102 |
|
|
} |
| 103 |
|
|
} |
| 104 |
|
|
return Points; |
| 105 |
|
|
} |
| 106 |
|
|
|
| 107 |
|
|
vector<Vector3d> Decahedron::truncatedRing( int n, int k ) { |
| 108 |
|
|
// This function generates the rings of a Decahedron |
| 109 |
|
|
// n: index of shell (order of ring) |
| 110 |
|
|
// k: how many atoms are missing from both ends of one side of |
| 111 |
|
|
// pentagon ring |
| 112 |
|
|
|
| 113 |
|
|
vector<Vector3d> ring; |
| 114 |
|
|
|
| 115 |
|
|
// Generate atomic coordinates along each side of pentagonal ring |
| 116 |
|
|
for (int i = 0; i < 5; i++) { |
| 117 |
|
|
|
| 118 |
|
|
Vector3d b1 = Basis[i]; |
| 119 |
|
|
Vector3d b2 = Basis[(i + 1) % 5]; |
| 120 |
|
|
|
| 121 |
|
|
if (k == 0) { |
| 122 |
|
|
// without truncation |
| 123 |
|
|
for (int j = 0; j < n; j++) { |
| 124 |
|
|
ring.push_back( RealType(n) * b1 + RealType(j) * (b2-b1)); |
| 125 |
|
|
} |
| 126 |
|
|
|
| 127 |
|
|
} else { |
| 128 |
|
|
for (int j = k; j <= n - k; j++) { |
| 129 |
|
|
// with truncation |
| 130 |
|
|
ring.push_back( RealType(n) * b1 + RealType(j) * (b2-b1)); |
| 131 |
|
|
} |
| 132 |
|
|
} |
| 133 |
|
|
} |
| 134 |
|
|
return ring; |
| 135 |
|
|
} |
| 136 |
|
|
|
| 137 |
|
|
CurlingStoneDecahedron::CurlingStoneDecahedron(int columnAtoms, int shells, |
| 138 |
|
|
int twinAtoms, |
| 139 |
|
|
int truncatedPlanes) : |
| 140 |
|
|
Decahedron(columnAtoms, shells, twinAtoms), T_(truncatedPlanes) {} |
| 141 |
|
|
|
| 142 |
|
|
vector<Vector3d> CurlingStoneDecahedron::getPoints() { |
| 143 |
|
|
|
| 144 |
|
|
vector<Vector3d> raw = Decahedron::getPoints(); |
| 145 |
|
|
vector<Vector3d> snipped; |
| 146 |
|
|
RealType maxZ, minZ; |
| 147 |
|
|
|
| 148 |
|
|
maxZ = raw.begin()->z(); |
| 149 |
|
|
minZ = raw.begin()->z(); |
| 150 |
|
|
|
| 151 |
|
|
for (vector<Vector3d>::iterator i = raw.begin(); i != raw.end(); ++i) { |
| 152 |
|
|
maxZ = max(maxZ, (*i).z()); |
| 153 |
|
|
minZ = min(minZ, (*i).z()); |
| 154 |
|
|
} |
| 155 |
|
|
|
| 156 |
|
|
for (vector<Vector3d>::iterator i = raw.begin(); i != raw.end(); ++i) { |
| 157 |
|
|
if ( ((*i).z() < maxZ - 0.995 * (T_ / 2.0) ) && |
| 158 |
|
|
((*i).z() > minZ + 0.995 * (T_ / 2.0) ) ){ |
| 159 |
|
|
snipped.push_back( (*i) ); |
| 160 |
|
|
} |
| 161 |
|
|
} |
| 162 |
|
|
return snipped; |
| 163 |
|
|
} |
| 164 |
|
|
|
| 165 |
|
|
} |