| 1 | gezelter | 1862 | /* | 
| 2 |  |  | * Copyright (c) 2013 The University of Notre Dame. All Rights Reserved. | 
| 3 |  |  | * | 
| 4 |  |  | * The University of Notre Dame grants you ("Licensee") a | 
| 5 |  |  | * non-exclusive, royalty free, license to use, modify and | 
| 6 |  |  | * redistribute this software in source and binary code form, provided | 
| 7 |  |  | * that the following conditions are met: | 
| 8 |  |  | * | 
| 9 |  |  | * 1. Redistributions of source code must retain the above copyright | 
| 10 |  |  | *    notice, this list of conditions and the following disclaimer. | 
| 11 |  |  | * | 
| 12 |  |  | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 |  |  | *    notice, this list of conditions and the following disclaimer in the | 
| 14 |  |  | *    documentation and/or other materials provided with the | 
| 15 |  |  | *    distribution. | 
| 16 |  |  | * | 
| 17 |  |  | * This software is provided "AS IS," without a warranty of any | 
| 18 |  |  | * kind. All express or implied conditions, representations and | 
| 19 |  |  | * warranties, including any implied warranty of merchantability, | 
| 20 |  |  | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 |  |  | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 |  |  | * be liable for any damages suffered by licensee as a result of | 
| 23 |  |  | * using, modifying or distributing the software or its | 
| 24 |  |  | * derivatives. In no event will the University of Notre Dame or its | 
| 25 |  |  | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 |  |  | * direct, indirect, special, consequential, incidental or punitive | 
| 27 |  |  | * damages, however caused and regardless of the theory of liability, | 
| 28 |  |  | * arising out of the use of or inability to use software, even if the | 
| 29 |  |  | * University of Notre Dame has been advised of the possibility of | 
| 30 |  |  | * such damages. | 
| 31 |  |  | * | 
| 32 |  |  | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 |  |  | * research, please cite the appropriate papers when you publish your | 
| 34 |  |  | * work.  Good starting points are: | 
| 35 |  |  | * | 
| 36 |  |  | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 |  |  | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 |  |  | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). | 
| 39 |  |  | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 |  |  | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 |  |  | */ | 
| 42 |  |  |  | 
| 43 |  |  | #include "clusters/Decahedron.hpp" | 
| 44 | gezelter | 1876 | #include <math.h> | 
| 45 | gezelter | 1862 |  | 
| 46 |  |  | using namespace std; | 
| 47 |  |  |  | 
| 48 |  |  | namespace OpenMD { | 
| 49 |  |  |  | 
| 50 |  |  | Decahedron::Decahedron(int columnAtoms, int shells, int twinAtoms) : | 
| 51 |  |  | N_(columnAtoms), M_(shells), K_(twinAtoms) { | 
| 52 |  |  |  | 
| 53 |  |  | Basis.clear(); | 
| 54 |  |  | Points.clear(); | 
| 55 |  |  |  | 
| 56 |  |  | // | 
| 57 |  |  | // Initialize Basis vectors. | 
| 58 |  |  | // | 
| 59 |  |  | const RealType phi = 2.0 * M_PI / 5.0;  // 72 degrees | 
| 60 |  |  | const RealType r3o2 = 0.5 * sqrt(3.0); | 
| 61 |  |  |  | 
| 62 |  |  | Basis.push_back( Vector3d(  r3o2*cos(0.0*phi), r3o2*sin(0.0*phi),  0.0 )); | 
| 63 |  |  | Basis.push_back( Vector3d(  r3o2*cos(1.0*phi), r3o2*sin(1.0*phi),  0.0 )); | 
| 64 |  |  | Basis.push_back( Vector3d(  r3o2*cos(2.0*phi), r3o2*sin(2.0*phi),  0.0 )); | 
| 65 |  |  | Basis.push_back( Vector3d(  r3o2*cos(3.0*phi), r3o2*sin(3.0*phi),  0.0 )); | 
| 66 |  |  | Basis.push_back( Vector3d(  r3o2*cos(4.0*phi), r3o2*sin(4.0*phi),  0.0 )); | 
| 67 |  |  | } | 
| 68 |  |  |  | 
| 69 |  |  | Decahedron::~Decahedron() { | 
| 70 |  |  | Basis.clear(); | 
| 71 |  |  | Points.clear(); | 
| 72 |  |  | } | 
| 73 |  |  |  | 
| 74 |  |  | vector<Vector3d> Decahedron::getPoints() { | 
| 75 |  |  | // Generate central column of Decahedron | 
| 76 |  |  |  | 
| 77 |  |  | for (int i = 0; i < N_; i++) { | 
| 78 |  |  | Points.push_back( Vector3d( 0.0, 0.0, RealType(i) - 0.5 * (N_ - 1) ) ); | 
| 79 |  |  | } | 
| 80 |  |  |  | 
| 81 |  |  | for (int i = 1; i < M_ + 1; i++) { | 
| 82 |  |  | // generate the shells of the decahedron: | 
| 83 |  |  |  | 
| 84 |  |  | vector<Vector3d> ring; | 
| 85 |  |  |  | 
| 86 |  |  | if (i > K_ - 1) { | 
| 87 |  |  | ring = truncatedRing(i, i - K_ + 1); | 
| 88 |  |  | } else { | 
| 89 |  |  | ring = truncatedRing(i, 0); | 
| 90 |  |  | } | 
| 91 |  |  |  | 
| 92 |  |  | // shift the rings in the z-direction (along the shell) | 
| 93 |  |  |  | 
| 94 |  |  | for (int j = 0; j < N_ - i; j++) { | 
| 95 |  |  | Vector3d shift = Vector3d(0, 0, -0.5 * RealType((N_-i)-1) + RealType(j)); | 
| 96 |  |  |  | 
| 97 |  |  | for (vector<Vector3d>::iterator k = ring.begin(); | 
| 98 |  |  | k != ring.end(); ++k) { | 
| 99 |  |  |  | 
| 100 |  |  | Points.push_back( (*k) + shift); | 
| 101 |  |  |  | 
| 102 |  |  | } | 
| 103 |  |  | } | 
| 104 |  |  | } | 
| 105 |  |  | return Points; | 
| 106 |  |  | } | 
| 107 |  |  |  | 
| 108 |  |  | vector<Vector3d> Decahedron::truncatedRing( int n, int k ) { | 
| 109 |  |  | // This function generates the rings of a Decahedron | 
| 110 |  |  | // n: index of shell (order of ring) | 
| 111 |  |  | // k: how many atoms are missing from both ends of one side of | 
| 112 |  |  | //    pentagon ring | 
| 113 |  |  |  | 
| 114 |  |  | vector<Vector3d> ring; | 
| 115 |  |  |  | 
| 116 |  |  | // Generate atomic coordinates along each side of pentagonal ring | 
| 117 |  |  | for (int i = 0; i < 5; i++) { | 
| 118 |  |  |  | 
| 119 |  |  | Vector3d b1 = Basis[i]; | 
| 120 |  |  | Vector3d b2 = Basis[(i + 1) % 5]; | 
| 121 |  |  |  | 
| 122 |  |  | if (k == 0) { | 
| 123 |  |  | // without truncation | 
| 124 |  |  | for (int j = 0; j < n; j++) { | 
| 125 |  |  | ring.push_back( RealType(n) * b1 + RealType(j) * (b2-b1)); | 
| 126 |  |  | } | 
| 127 |  |  |  | 
| 128 |  |  | } else { | 
| 129 |  |  | for (int j = k; j <= n - k; j++) { | 
| 130 |  |  | // with truncation | 
| 131 |  |  | ring.push_back( RealType(n) * b1 + RealType(j) * (b2-b1)); | 
| 132 |  |  | } | 
| 133 |  |  | } | 
| 134 |  |  | } | 
| 135 |  |  | return ring; | 
| 136 |  |  | } | 
| 137 |  |  |  | 
| 138 |  |  | CurlingStoneDecahedron::CurlingStoneDecahedron(int columnAtoms, int shells, | 
| 139 |  |  | int twinAtoms, | 
| 140 |  |  | int truncatedPlanes) : | 
| 141 |  |  | Decahedron(columnAtoms, shells, twinAtoms), T_(truncatedPlanes) {} | 
| 142 |  |  |  | 
| 143 |  |  | vector<Vector3d> CurlingStoneDecahedron::getPoints() { | 
| 144 |  |  |  | 
| 145 |  |  | vector<Vector3d> raw = Decahedron::getPoints(); | 
| 146 |  |  | vector<Vector3d> snipped; | 
| 147 |  |  | RealType maxZ, minZ; | 
| 148 |  |  |  | 
| 149 |  |  | maxZ = raw.begin()->z(); | 
| 150 |  |  | minZ = raw.begin()->z(); | 
| 151 |  |  |  | 
| 152 |  |  | for (vector<Vector3d>::iterator i = raw.begin(); i != raw.end(); ++i) { | 
| 153 |  |  | maxZ = max(maxZ, (*i).z()); | 
| 154 |  |  | minZ = min(minZ, (*i).z()); | 
| 155 |  |  | } | 
| 156 |  |  |  | 
| 157 |  |  | for (vector<Vector3d>::iterator i = raw.begin(); i != raw.end(); ++i) { | 
| 158 |  |  | if ( ((*i).z() < maxZ - 0.995 * (T_ / 2.0) ) && | 
| 159 |  |  | ((*i).z() > minZ + 0.995 * (T_ / 2.0) ) ){ | 
| 160 |  |  | snipped.push_back( (*i) ); | 
| 161 |  |  | } | 
| 162 |  |  | } | 
| 163 |  |  | return snipped; | 
| 164 |  |  | } | 
| 165 |  |  |  | 
| 166 |  |  | } |