| 1 | 
gezelter | 
507 | 
/* | 
| 2 | 
gezelter | 
246 | 
 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | 
  | 
  | 
 * | 
| 4 | 
  | 
  | 
 * The University of Notre Dame grants you ("Licensee") a | 
| 5 | 
  | 
  | 
 * non-exclusive, royalty free, license to use, modify and | 
| 6 | 
  | 
  | 
 * redistribute this software in source and binary code form, provided | 
| 7 | 
  | 
  | 
 * that the following conditions are met: | 
| 8 | 
  | 
  | 
 * | 
| 9 | 
  | 
  | 
 * 1. Acknowledgement of the program authors must be made in any | 
| 10 | 
  | 
  | 
 *    publication of scientific results based in part on use of the | 
| 11 | 
  | 
  | 
 *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | 
  | 
  | 
 *    the article in which the program was described (Matthew | 
| 13 | 
  | 
  | 
 *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | 
  | 
  | 
 *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | 
  | 
  | 
 *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | 
  | 
  | 
 *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | 
  | 
  | 
 * | 
| 18 | 
  | 
  | 
 * 2. Redistributions of source code must retain the above copyright | 
| 19 | 
  | 
  | 
 *    notice, this list of conditions and the following disclaimer. | 
| 20 | 
  | 
  | 
 * | 
| 21 | 
  | 
  | 
 * 3. Redistributions in binary form must reproduce the above copyright | 
| 22 | 
  | 
  | 
 *    notice, this list of conditions and the following disclaimer in the | 
| 23 | 
  | 
  | 
 *    documentation and/or other materials provided with the | 
| 24 | 
  | 
  | 
 *    distribution. | 
| 25 | 
  | 
  | 
 * | 
| 26 | 
  | 
  | 
 * This software is provided "AS IS," without a warranty of any | 
| 27 | 
  | 
  | 
 * kind. All express or implied conditions, representations and | 
| 28 | 
  | 
  | 
 * warranties, including any implied warranty of merchantability, | 
| 29 | 
  | 
  | 
 * fitness for a particular purpose or non-infringement, are hereby | 
| 30 | 
  | 
  | 
 * excluded.  The University of Notre Dame and its licensors shall not | 
| 31 | 
  | 
  | 
 * be liable for any damages suffered by licensee as a result of | 
| 32 | 
  | 
  | 
 * using, modifying or distributing the software or its | 
| 33 | 
  | 
  | 
 * derivatives. In no event will the University of Notre Dame or its | 
| 34 | 
  | 
  | 
 * licensors be liable for any lost revenue, profit or data, or for | 
| 35 | 
  | 
  | 
 * direct, indirect, special, consequential, incidental or punitive | 
| 36 | 
  | 
  | 
 * damages, however caused and regardless of the theory of liability, | 
| 37 | 
  | 
  | 
 * arising out of the use of or inability to use software, even if the | 
| 38 | 
  | 
  | 
 * University of Notre Dame has been advised of the possibility of | 
| 39 | 
  | 
  | 
 * such damages. | 
| 40 | 
  | 
  | 
 */ | 
| 41 | 
  | 
  | 
  | 
| 42 | 
  | 
  | 
#include "DLM.hpp" | 
| 43 | 
  | 
  | 
 | 
| 44 | 
  | 
  | 
namespace oopse { | 
| 45 | 
  | 
  | 
 | 
| 46 | 
tim | 
963 | 
  void DLM::doRotate(StuntDouble* sd, Vector3d& ji, RealType dt) { | 
| 47 | 
  | 
  | 
    RealType dt2 = 0.5 * dt;     | 
| 48 | 
  | 
  | 
    RealType angle; | 
| 49 | 
gezelter | 
246 | 
 | 
| 50 | 
  | 
  | 
    RotMat3x3d A = sd->getA(); | 
| 51 | 
  | 
  | 
    Mat3x3d I = sd->getI(); | 
| 52 | 
  | 
  | 
 | 
| 53 | 
  | 
  | 
    // use the angular velocities to propagate the rotation matrix a full time step | 
| 54 | 
  | 
  | 
    if (sd->isLinear()) { | 
| 55 | 
  | 
  | 
 | 
| 56 | 
gezelter | 
507 | 
      int i = sd->linearAxis(); | 
| 57 | 
  | 
  | 
      int j = (i+1)%3; | 
| 58 | 
  | 
  | 
      int k = (i+2)%3; | 
| 59 | 
gezelter | 
246 | 
 | 
| 60 | 
gezelter | 
507 | 
      angle = dt2 * ji[j] / I(j, j); | 
| 61 | 
  | 
  | 
      rotateStep( k, i, angle, ji, A ); | 
| 62 | 
gezelter | 
246 | 
 | 
| 63 | 
gezelter | 
507 | 
      angle = dt * ji[k] / I(k, k); | 
| 64 | 
  | 
  | 
      rotateStep( i, j, angle, ji, A); | 
| 65 | 
gezelter | 
246 | 
 | 
| 66 | 
gezelter | 
507 | 
      angle = dt2 * ji[j] / I(j, j); | 
| 67 | 
  | 
  | 
      rotateStep( k, i, angle, ji, A ); | 
| 68 | 
gezelter | 
246 | 
 | 
| 69 | 
  | 
  | 
    } else { | 
| 70 | 
gezelter | 
507 | 
      // rotate about the x-axis | 
| 71 | 
  | 
  | 
      angle = dt2 * ji[0] / I(0, 0); | 
| 72 | 
  | 
  | 
      rotateStep( 1, 2, angle, ji, A ); | 
| 73 | 
gezelter | 
246 | 
 | 
| 74 | 
gezelter | 
507 | 
      // rotate about the y-axis | 
| 75 | 
  | 
  | 
      angle = dt2 * ji[1] / I(1, 1); | 
| 76 | 
  | 
  | 
      rotateStep( 2, 0, angle, ji, A ); | 
| 77 | 
gezelter | 
246 | 
 | 
| 78 | 
gezelter | 
507 | 
      // rotate about the z-axis | 
| 79 | 
  | 
  | 
      angle = dt * ji[2] / I(2, 2); | 
| 80 | 
  | 
  | 
      sd->addZangle(angle); | 
| 81 | 
  | 
  | 
      rotateStep( 0, 1, angle, ji, A); | 
| 82 | 
gezelter | 
246 | 
 | 
| 83 | 
gezelter | 
507 | 
      // rotate about the y-axis | 
| 84 | 
  | 
  | 
      angle = dt2 * ji[1] / I(1, 1); | 
| 85 | 
  | 
  | 
      rotateStep( 2, 0, angle, ji, A ); | 
| 86 | 
gezelter | 
246 | 
 | 
| 87 | 
gezelter | 
507 | 
      // rotate about the x-axis | 
| 88 | 
  | 
  | 
      angle = dt2 * ji[0] / I(0, 0); | 
| 89 | 
  | 
  | 
      rotateStep( 1, 2, angle, ji, A ); | 
| 90 | 
gezelter | 
246 | 
 | 
| 91 | 
  | 
  | 
    } | 
| 92 | 
  | 
  | 
 | 
| 93 | 
  | 
  | 
    sd->setA( A  ); | 
| 94 | 
gezelter | 
507 | 
  } | 
| 95 | 
gezelter | 
246 | 
 | 
| 96 | 
  | 
  | 
 | 
| 97 | 
tim | 
963 | 
  void DLM::rotateStep(int axes1, int axes2, RealType angle, Vector3d& ji, RotMat3x3d& A) { | 
| 98 | 
gezelter | 
246 | 
 | 
| 99 | 
tim | 
963 | 
    RealType sinAngle; | 
| 100 | 
  | 
  | 
    RealType cosAngle; | 
| 101 | 
  | 
  | 
    RealType angleSqr; | 
| 102 | 
  | 
  | 
    RealType angleSqrOver4; | 
| 103 | 
  | 
  | 
    RealType top, bottom; | 
| 104 | 
gezelter | 
246 | 
 | 
| 105 | 
  | 
  | 
    RotMat3x3d tempA(A);  // initialize the tempA | 
| 106 | 
  | 
  | 
    Vector3d tempJ(0.0); | 
| 107 | 
  | 
  | 
 | 
| 108 | 
  | 
  | 
    RotMat3x3d rot = RotMat3x3d::identity(); // initalize rot as a unit matrix | 
| 109 | 
  | 
  | 
 | 
| 110 | 
  | 
  | 
    // use a small angle aproximation for sin and cosine | 
| 111 | 
  | 
  | 
 | 
| 112 | 
xsun | 
1216 | 
    angleSqr = angle * angle; | 
| 113 | 
  | 
  | 
    angleSqrOver4 = angleSqr / 4.0; | 
| 114 | 
  | 
  | 
    top = 1.0 - angleSqrOver4; | 
| 115 | 
  | 
  | 
    bottom = 1.0 + angleSqrOver4; | 
| 116 | 
gezelter | 
246 | 
 | 
| 117 | 
xsun | 
1216 | 
    cosAngle = top / bottom; | 
| 118 | 
  | 
  | 
    sinAngle = angle / bottom; | 
| 119 | 
  | 
  | 
 | 
| 120 | 
  | 
  | 
    // or don't use the small angle approximation: | 
| 121 | 
  | 
  | 
    //cosAngle = cos(angle); | 
| 122 | 
  | 
  | 
    //sinAngle = sin(angle); | 
| 123 | 
gezelter | 
246 | 
    rot(axes1, axes1) = cosAngle; | 
| 124 | 
  | 
  | 
    rot(axes2, axes2) = cosAngle; | 
| 125 | 
  | 
  | 
 | 
| 126 | 
  | 
  | 
    rot(axes1, axes2) = sinAngle; | 
| 127 | 
  | 
  | 
    rot(axes2, axes1) = -sinAngle; | 
| 128 | 
  | 
  | 
 | 
| 129 | 
  | 
  | 
    // rotate the momentum acoording to: ji[] = rot[][] * ji[] | 
| 130 | 
  | 
  | 
    ji = rot * ji; | 
| 131 | 
  | 
  | 
 | 
| 132 | 
  | 
  | 
 | 
| 133 | 
xsun | 
1216 | 
    // This code comes from converting an algorithm detailed in  | 
| 134 | 
  | 
  | 
    // J. Chem. Phys. 107 (15), pp. 5840-5851 by Dullweber,  | 
| 135 | 
  | 
  | 
    // Leimkuhler and McLachlan (DLM) for use in our code. | 
| 136 | 
  | 
  | 
    // In Appendix A, the DLM paper has the change to the rotation  | 
| 137 | 
  | 
  | 
    // matrix as: Q = Q * rot.transpose(), but our rotation matrix  | 
| 138 | 
  | 
  | 
    // A is actually equivalent to Q.transpose(). This fact can be  | 
| 139 | 
  | 
  | 
    // seen on page 5849 of the DLM paper where a lab frame  | 
| 140 | 
  | 
  | 
    // dipole \mu_i(t) is expressed in terms of a body-fixed | 
| 141 | 
  | 
  | 
    // reference orientation, \bar{\mu_i} and the rotation matrix, Q: | 
| 142 | 
  | 
  | 
    //  \mu_i(t) = Q * \bar{\mu_i} | 
| 143 | 
  | 
  | 
    // Our code computes lab frame vectors from body-fixed reference | 
| 144 | 
  | 
  | 
    // vectors using: | 
| 145 | 
  | 
  | 
    //   v_{lab} = A.transpose() * v_{body} | 
| 146 | 
  | 
  | 
    //  (See StuntDouble.hpp for confirmation of this fact). | 
| 147 | 
  | 
  | 
    // | 
| 148 | 
  | 
  | 
    // So, using the identity: | 
| 149 | 
  | 
  | 
    //  (A * B).transpose() = B.transpose() * A.transpose(),  we | 
| 150 | 
  | 
  | 
    // get the equivalent of Q = Q * rot.transpose() for our code to be: | 
| 151 | 
  | 
  | 
 | 
| 152 | 
  | 
  | 
    A = rot * A; | 
| 153 | 
gezelter | 
246 | 
   | 
| 154 | 
gezelter | 
507 | 
  } | 
| 155 | 
gezelter | 
246 | 
 | 
| 156 | 
  | 
  | 
 | 
| 157 | 
  | 
  | 
} |