| 1 |
gezelter |
507 |
/* |
| 2 |
gezelter |
246 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
| 3 |
|
|
* |
| 4 |
|
|
* The University of Notre Dame grants you ("Licensee") a |
| 5 |
|
|
* non-exclusive, royalty free, license to use, modify and |
| 6 |
|
|
* redistribute this software in source and binary code form, provided |
| 7 |
|
|
* that the following conditions are met: |
| 8 |
|
|
* |
| 9 |
gezelter |
1390 |
* 1. Redistributions of source code must retain the above copyright |
| 10 |
gezelter |
246 |
* notice, this list of conditions and the following disclaimer. |
| 11 |
|
|
* |
| 12 |
gezelter |
1390 |
* 2. Redistributions in binary form must reproduce the above copyright |
| 13 |
gezelter |
246 |
* notice, this list of conditions and the following disclaimer in the |
| 14 |
|
|
* documentation and/or other materials provided with the |
| 15 |
|
|
* distribution. |
| 16 |
|
|
* |
| 17 |
|
|
* This software is provided "AS IS," without a warranty of any |
| 18 |
|
|
* kind. All express or implied conditions, representations and |
| 19 |
|
|
* warranties, including any implied warranty of merchantability, |
| 20 |
|
|
* fitness for a particular purpose or non-infringement, are hereby |
| 21 |
|
|
* excluded. The University of Notre Dame and its licensors shall not |
| 22 |
|
|
* be liable for any damages suffered by licensee as a result of |
| 23 |
|
|
* using, modifying or distributing the software or its |
| 24 |
|
|
* derivatives. In no event will the University of Notre Dame or its |
| 25 |
|
|
* licensors be liable for any lost revenue, profit or data, or for |
| 26 |
|
|
* direct, indirect, special, consequential, incidental or punitive |
| 27 |
|
|
* damages, however caused and regardless of the theory of liability, |
| 28 |
|
|
* arising out of the use of or inability to use software, even if the |
| 29 |
|
|
* University of Notre Dame has been advised of the possibility of |
| 30 |
|
|
* such damages. |
| 31 |
gezelter |
1390 |
* |
| 32 |
|
|
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
| 33 |
|
|
* research, please cite the appropriate papers when you publish your |
| 34 |
|
|
* work. Good starting points are: |
| 35 |
|
|
* |
| 36 |
|
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
| 37 |
|
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
| 38 |
|
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
| 39 |
|
|
* [4] Vardeman & Gezelter, in progress (2009). |
| 40 |
gezelter |
246 |
*/ |
| 41 |
|
|
|
| 42 |
|
|
#include "DLM.hpp" |
| 43 |
|
|
|
| 44 |
gezelter |
1390 |
namespace OpenMD { |
| 45 |
gezelter |
246 |
|
| 46 |
tim |
963 |
void DLM::doRotate(StuntDouble* sd, Vector3d& ji, RealType dt) { |
| 47 |
|
|
RealType dt2 = 0.5 * dt; |
| 48 |
|
|
RealType angle; |
| 49 |
gezelter |
246 |
|
| 50 |
|
|
RotMat3x3d A = sd->getA(); |
| 51 |
|
|
Mat3x3d I = sd->getI(); |
| 52 |
|
|
|
| 53 |
|
|
// use the angular velocities to propagate the rotation matrix a full time step |
| 54 |
|
|
if (sd->isLinear()) { |
| 55 |
|
|
|
| 56 |
gezelter |
507 |
int i = sd->linearAxis(); |
| 57 |
|
|
int j = (i+1)%3; |
| 58 |
|
|
int k = (i+2)%3; |
| 59 |
gezelter |
246 |
|
| 60 |
gezelter |
507 |
angle = dt2 * ji[j] / I(j, j); |
| 61 |
|
|
rotateStep( k, i, angle, ji, A ); |
| 62 |
gezelter |
246 |
|
| 63 |
gezelter |
507 |
angle = dt * ji[k] / I(k, k); |
| 64 |
|
|
rotateStep( i, j, angle, ji, A); |
| 65 |
gezelter |
246 |
|
| 66 |
gezelter |
507 |
angle = dt2 * ji[j] / I(j, j); |
| 67 |
|
|
rotateStep( k, i, angle, ji, A ); |
| 68 |
gezelter |
246 |
|
| 69 |
|
|
} else { |
| 70 |
gezelter |
507 |
// rotate about the x-axis |
| 71 |
|
|
angle = dt2 * ji[0] / I(0, 0); |
| 72 |
|
|
rotateStep( 1, 2, angle, ji, A ); |
| 73 |
gezelter |
246 |
|
| 74 |
gezelter |
507 |
// rotate about the y-axis |
| 75 |
|
|
angle = dt2 * ji[1] / I(1, 1); |
| 76 |
|
|
rotateStep( 2, 0, angle, ji, A ); |
| 77 |
gezelter |
246 |
|
| 78 |
gezelter |
507 |
// rotate about the z-axis |
| 79 |
|
|
angle = dt * ji[2] / I(2, 2); |
| 80 |
|
|
sd->addZangle(angle); |
| 81 |
|
|
rotateStep( 0, 1, angle, ji, A); |
| 82 |
gezelter |
246 |
|
| 83 |
gezelter |
507 |
// rotate about the y-axis |
| 84 |
|
|
angle = dt2 * ji[1] / I(1, 1); |
| 85 |
|
|
rotateStep( 2, 0, angle, ji, A ); |
| 86 |
gezelter |
246 |
|
| 87 |
gezelter |
507 |
// rotate about the x-axis |
| 88 |
|
|
angle = dt2 * ji[0] / I(0, 0); |
| 89 |
|
|
rotateStep( 1, 2, angle, ji, A ); |
| 90 |
gezelter |
246 |
|
| 91 |
|
|
} |
| 92 |
|
|
|
| 93 |
|
|
sd->setA( A ); |
| 94 |
gezelter |
507 |
} |
| 95 |
gezelter |
246 |
|
| 96 |
|
|
|
| 97 |
tim |
963 |
void DLM::rotateStep(int axes1, int axes2, RealType angle, Vector3d& ji, RotMat3x3d& A) { |
| 98 |
gezelter |
246 |
|
| 99 |
tim |
963 |
RealType sinAngle; |
| 100 |
|
|
RealType cosAngle; |
| 101 |
|
|
RealType angleSqr; |
| 102 |
|
|
RealType angleSqrOver4; |
| 103 |
|
|
RealType top, bottom; |
| 104 |
gezelter |
246 |
|
| 105 |
|
|
RotMat3x3d tempA(A); // initialize the tempA |
| 106 |
|
|
Vector3d tempJ(0.0); |
| 107 |
|
|
|
| 108 |
|
|
RotMat3x3d rot = RotMat3x3d::identity(); // initalize rot as a unit matrix |
| 109 |
|
|
|
| 110 |
|
|
// use a small angle aproximation for sin and cosine |
| 111 |
|
|
|
| 112 |
xsun |
1216 |
angleSqr = angle * angle; |
| 113 |
|
|
angleSqrOver4 = angleSqr / 4.0; |
| 114 |
|
|
top = 1.0 - angleSqrOver4; |
| 115 |
|
|
bottom = 1.0 + angleSqrOver4; |
| 116 |
gezelter |
246 |
|
| 117 |
xsun |
1216 |
cosAngle = top / bottom; |
| 118 |
|
|
sinAngle = angle / bottom; |
| 119 |
|
|
|
| 120 |
|
|
// or don't use the small angle approximation: |
| 121 |
|
|
//cosAngle = cos(angle); |
| 122 |
|
|
//sinAngle = sin(angle); |
| 123 |
gezelter |
246 |
rot(axes1, axes1) = cosAngle; |
| 124 |
|
|
rot(axes2, axes2) = cosAngle; |
| 125 |
|
|
|
| 126 |
|
|
rot(axes1, axes2) = sinAngle; |
| 127 |
|
|
rot(axes2, axes1) = -sinAngle; |
| 128 |
|
|
|
| 129 |
|
|
// rotate the momentum acoording to: ji[] = rot[][] * ji[] |
| 130 |
|
|
ji = rot * ji; |
| 131 |
|
|
|
| 132 |
xsun |
1216 |
// This code comes from converting an algorithm detailed in |
| 133 |
|
|
// J. Chem. Phys. 107 (15), pp. 5840-5851 by Dullweber, |
| 134 |
|
|
// Leimkuhler and McLachlan (DLM) for use in our code. |
| 135 |
|
|
// In Appendix A, the DLM paper has the change to the rotation |
| 136 |
|
|
// matrix as: Q = Q * rot.transpose(), but our rotation matrix |
| 137 |
|
|
// A is actually equivalent to Q.transpose(). This fact can be |
| 138 |
|
|
// seen on page 5849 of the DLM paper where a lab frame |
| 139 |
|
|
// dipole \mu_i(t) is expressed in terms of a body-fixed |
| 140 |
|
|
// reference orientation, \bar{\mu_i} and the rotation matrix, Q: |
| 141 |
|
|
// \mu_i(t) = Q * \bar{\mu_i} |
| 142 |
|
|
// Our code computes lab frame vectors from body-fixed reference |
| 143 |
|
|
// vectors using: |
| 144 |
|
|
// v_{lab} = A.transpose() * v_{body} |
| 145 |
|
|
// (See StuntDouble.hpp for confirmation of this fact). |
| 146 |
|
|
// |
| 147 |
|
|
// So, using the identity: |
| 148 |
|
|
// (A * B).transpose() = B.transpose() * A.transpose(), we |
| 149 |
|
|
// get the equivalent of Q = Q * rot.transpose() for our code to be: |
| 150 |
|
|
|
| 151 |
|
|
A = rot * A; |
| 152 |
gezelter |
246 |
|
| 153 |
gezelter |
507 |
} |
| 154 |
gezelter |
246 |
|
| 155 |
|
|
|
| 156 |
|
|
} |