| 1 |
< |
/* |
| 1 |
> |
/* |
| 2 |
|
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
| 3 |
|
* |
| 4 |
|
* The University of Notre Dame grants you ("Licensee") a |
| 6 |
|
* redistribute this software in source and binary code form, provided |
| 7 |
|
* that the following conditions are met: |
| 8 |
|
* |
| 9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
| 10 |
< |
* publication of scientific results based in part on use of the |
| 11 |
< |
* program. An acceptable form of acknowledgement is citation of |
| 12 |
< |
* the article in which the program was described (Matthew |
| 13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
| 14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
| 15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
| 16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
| 17 |
< |
* |
| 18 |
< |
* 2. Redistributions of source code must retain the above copyright |
| 9 |
> |
* 1. Redistributions of source code must retain the above copyright |
| 10 |
|
* notice, this list of conditions and the following disclaimer. |
| 11 |
|
* |
| 12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
| 12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
| 13 |
|
* notice, this list of conditions and the following disclaimer in the |
| 14 |
|
* documentation and/or other materials provided with the |
| 15 |
|
* distribution. |
| 28 |
|
* arising out of the use of or inability to use software, even if the |
| 29 |
|
* University of Notre Dame has been advised of the possibility of |
| 30 |
|
* such damages. |
| 31 |
+ |
* |
| 32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
| 33 |
+ |
* research, please cite the appropriate papers when you publish your |
| 34 |
+ |
* work. Good starting points are: |
| 35 |
+ |
* |
| 36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
| 37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
| 38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
| 39 |
+ |
* [4] Vardeman & Gezelter, in progress (2009). |
| 40 |
|
*/ |
| 41 |
|
|
| 42 |
|
#include "DLM.hpp" |
| 43 |
|
|
| 44 |
< |
namespace oopse { |
| 44 |
> |
namespace OpenMD { |
| 45 |
|
|
| 46 |
< |
void DLM::doRotate(StuntDouble* sd, Vector3d& ji, double dt) { |
| 47 |
< |
double dt2 = 0.5 * dt; |
| 48 |
< |
double angle; |
| 46 |
> |
void DLM::doRotate(StuntDouble* sd, Vector3d& ji, RealType dt) { |
| 47 |
> |
RealType dt2 = 0.5 * dt; |
| 48 |
> |
RealType angle; |
| 49 |
|
|
| 50 |
|
RotMat3x3d A = sd->getA(); |
| 51 |
|
Mat3x3d I = sd->getI(); |
| 53 |
|
// use the angular velocities to propagate the rotation matrix a full time step |
| 54 |
|
if (sd->isLinear()) { |
| 55 |
|
|
| 56 |
< |
int i = sd->linearAxis(); |
| 57 |
< |
int j = (i+1)%3; |
| 58 |
< |
int k = (i+2)%3; |
| 56 |
> |
int i = sd->linearAxis(); |
| 57 |
> |
int j = (i+1)%3; |
| 58 |
> |
int k = (i+2)%3; |
| 59 |
|
|
| 60 |
< |
angle = dt2 * ji[j] / I(j, j); |
| 61 |
< |
rotateStep( k, i, angle, ji, A ); |
| 60 |
> |
angle = dt2 * ji[j] / I(j, j); |
| 61 |
> |
rotateStep( k, i, angle, ji, A ); |
| 62 |
|
|
| 63 |
< |
angle = dt * ji[k] / I(k, k); |
| 64 |
< |
rotateStep( i, j, angle, ji, A); |
| 63 |
> |
angle = dt * ji[k] / I(k, k); |
| 64 |
> |
rotateStep( i, j, angle, ji, A); |
| 65 |
|
|
| 66 |
< |
angle = dt2 * ji[j] / I(j, j); |
| 67 |
< |
rotateStep( k, i, angle, ji, A ); |
| 66 |
> |
angle = dt2 * ji[j] / I(j, j); |
| 67 |
> |
rotateStep( k, i, angle, ji, A ); |
| 68 |
|
|
| 69 |
|
} else { |
| 70 |
< |
// rotate about the x-axis |
| 71 |
< |
angle = dt2 * ji[0] / I(0, 0); |
| 72 |
< |
rotateStep( 1, 2, angle, ji, A ); |
| 70 |
> |
// rotate about the x-axis |
| 71 |
> |
angle = dt2 * ji[0] / I(0, 0); |
| 72 |
> |
rotateStep( 1, 2, angle, ji, A ); |
| 73 |
|
|
| 74 |
< |
// rotate about the y-axis |
| 75 |
< |
angle = dt2 * ji[1] / I(1, 1); |
| 76 |
< |
rotateStep( 2, 0, angle, ji, A ); |
| 74 |
> |
// rotate about the y-axis |
| 75 |
> |
angle = dt2 * ji[1] / I(1, 1); |
| 76 |
> |
rotateStep( 2, 0, angle, ji, A ); |
| 77 |
|
|
| 78 |
< |
// rotate about the z-axis |
| 79 |
< |
angle = dt * ji[2] / I(2, 2); |
| 80 |
< |
sd->addZangle(angle); |
| 81 |
< |
rotateStep( 0, 1, angle, ji, A); |
| 78 |
> |
// rotate about the z-axis |
| 79 |
> |
angle = dt * ji[2] / I(2, 2); |
| 80 |
> |
sd->addZangle(angle); |
| 81 |
> |
rotateStep( 0, 1, angle, ji, A); |
| 82 |
|
|
| 83 |
< |
// rotate about the y-axis |
| 84 |
< |
angle = dt2 * ji[1] / I(1, 1); |
| 85 |
< |
rotateStep( 2, 0, angle, ji, A ); |
| 83 |
> |
// rotate about the y-axis |
| 84 |
> |
angle = dt2 * ji[1] / I(1, 1); |
| 85 |
> |
rotateStep( 2, 0, angle, ji, A ); |
| 86 |
|
|
| 87 |
< |
// rotate about the x-axis |
| 88 |
< |
angle = dt2 * ji[0] / I(0, 0); |
| 89 |
< |
rotateStep( 1, 2, angle, ji, A ); |
| 87 |
> |
// rotate about the x-axis |
| 88 |
> |
angle = dt2 * ji[0] / I(0, 0); |
| 89 |
> |
rotateStep( 1, 2, angle, ji, A ); |
| 90 |
|
|
| 91 |
|
} |
| 92 |
|
|
| 93 |
|
sd->setA( A ); |
| 94 |
< |
} |
| 94 |
> |
} |
| 95 |
|
|
| 96 |
|
|
| 97 |
< |
void DLM::rotateStep(int axes1, int axes2, double angle, Vector3d& ji, RotMat3x3d& A) { |
| 97 |
> |
void DLM::rotateStep(int axes1, int axes2, RealType angle, Vector3d& ji, RotMat3x3d& A) { |
| 98 |
|
|
| 99 |
< |
double sinAngle; |
| 100 |
< |
double cosAngle; |
| 101 |
< |
double angleSqr; |
| 102 |
< |
double angleSqrOver4; |
| 103 |
< |
double top, bottom; |
| 99 |
> |
RealType sinAngle; |
| 100 |
> |
RealType cosAngle; |
| 101 |
> |
RealType angleSqr; |
| 102 |
> |
RealType angleSqrOver4; |
| 103 |
> |
RealType top, bottom; |
| 104 |
|
|
| 105 |
|
RotMat3x3d tempA(A); // initialize the tempA |
| 106 |
|
Vector3d tempJ(0.0); |
| 109 |
|
|
| 110 |
|
// use a small angle aproximation for sin and cosine |
| 111 |
|
|
| 112 |
< |
//angleSqr = angle * angle; |
| 113 |
< |
//angleSqrOver4 = angleSqr / 4.0; |
| 114 |
< |
//top = 1.0 - angleSqrOver4; |
| 115 |
< |
//bottom = 1.0 + angleSqrOver4; |
| 112 |
> |
angleSqr = angle * angle; |
| 113 |
> |
angleSqrOver4 = angleSqr / 4.0; |
| 114 |
> |
top = 1.0 - angleSqrOver4; |
| 115 |
> |
bottom = 1.0 + angleSqrOver4; |
| 116 |
|
|
| 117 |
< |
//cosAngle = top / bottom; |
| 118 |
< |
//sinAngle = angle / bottom; |
| 119 |
< |
cosAngle = cos(angle); |
| 120 |
< |
sinAngle = sin(angle); |
| 117 |
> |
cosAngle = top / bottom; |
| 118 |
> |
sinAngle = angle / bottom; |
| 119 |
> |
|
| 120 |
> |
// or don't use the small angle approximation: |
| 121 |
> |
//cosAngle = cos(angle); |
| 122 |
> |
//sinAngle = sin(angle); |
| 123 |
|
rot(axes1, axes1) = cosAngle; |
| 124 |
|
rot(axes2, axes2) = cosAngle; |
| 125 |
|
|
| 129 |
|
// rotate the momentum acoording to: ji[] = rot[][] * ji[] |
| 130 |
|
ji = rot * ji; |
| 131 |
|
|
| 132 |
< |
// rotate the Rotation matrix acording to: |
| 133 |
< |
// A[][] = A[][] * transpose(rot[][]) |
| 134 |
< |
// transpose(A[][]) = transpose(A[][]) * transpose(rot[][]) |
| 132 |
> |
// This code comes from converting an algorithm detailed in |
| 133 |
> |
// J. Chem. Phys. 107 (15), pp. 5840-5851 by Dullweber, |
| 134 |
> |
// Leimkuhler and McLachlan (DLM) for use in our code. |
| 135 |
> |
// In Appendix A, the DLM paper has the change to the rotation |
| 136 |
> |
// matrix as: Q = Q * rot.transpose(), but our rotation matrix |
| 137 |
> |
// A is actually equivalent to Q.transpose(). This fact can be |
| 138 |
> |
// seen on page 5849 of the DLM paper where a lab frame |
| 139 |
> |
// dipole \mu_i(t) is expressed in terms of a body-fixed |
| 140 |
> |
// reference orientation, \bar{\mu_i} and the rotation matrix, Q: |
| 141 |
> |
// \mu_i(t) = Q * \bar{\mu_i} |
| 142 |
> |
// Our code computes lab frame vectors from body-fixed reference |
| 143 |
> |
// vectors using: |
| 144 |
> |
// v_{lab} = A.transpose() * v_{body} |
| 145 |
> |
// (See StuntDouble.hpp for confirmation of this fact). |
| 146 |
> |
// |
| 147 |
> |
// So, using the identity: |
| 148 |
> |
// (A * B).transpose() = B.transpose() * A.transpose(), we |
| 149 |
> |
// get the equivalent of Q = Q * rot.transpose() for our code to be: |
| 150 |
|
|
| 151 |
< |
A = rot * A; //? A = A* rot.transpose(); |
| 151 |
> |
A = rot * A; |
| 152 |
|
|
| 153 |
< |
} |
| 153 |
> |
} |
| 154 |
|
|
| 155 |
|
|
| 156 |
|
} |