| 109 | 
  | 
 | 
| 110 | 
  | 
    // use a small angle aproximation for sin and cosine | 
| 111 | 
  | 
 | 
| 112 | 
< | 
    //angleSqr = angle * angle; | 
| 113 | 
< | 
    //angleSqrOver4 = angleSqr / 4.0; | 
| 114 | 
< | 
    //top = 1.0 - angleSqrOver4; | 
| 115 | 
< | 
    //bottom = 1.0 + angleSqrOver4; | 
| 112 | 
> | 
    angleSqr = angle * angle; | 
| 113 | 
> | 
    angleSqrOver4 = angleSqr / 4.0; | 
| 114 | 
> | 
    top = 1.0 - angleSqrOver4; | 
| 115 | 
> | 
    bottom = 1.0 + angleSqrOver4; | 
| 116 | 
  | 
 | 
| 117 | 
< | 
    //cosAngle = top / bottom; | 
| 118 | 
< | 
    //sinAngle = angle / bottom; | 
| 119 | 
< | 
    cosAngle = cos(angle); | 
| 120 | 
< | 
    sinAngle = sin(angle); | 
| 117 | 
> | 
    cosAngle = top / bottom; | 
| 118 | 
> | 
    sinAngle = angle / bottom; | 
| 119 | 
> | 
 | 
| 120 | 
> | 
    // or don't use the small angle approximation: | 
| 121 | 
> | 
    //cosAngle = cos(angle); | 
| 122 | 
> | 
    //sinAngle = sin(angle); | 
| 123 | 
  | 
    rot(axes1, axes1) = cosAngle; | 
| 124 | 
  | 
    rot(axes2, axes2) = cosAngle; | 
| 125 | 
  | 
 | 
| 129 | 
  | 
    // rotate the momentum acoording to: ji[] = rot[][] * ji[] | 
| 130 | 
  | 
    ji = rot * ji; | 
| 131 | 
  | 
 | 
| 130 | 
– | 
    // rotate the Rotation matrix acording to: | 
| 131 | 
– | 
    // A[][] = A[][] * transpose(rot[][]) | 
| 132 | 
– | 
    // transpose(A[][]) = transpose(A[][]) * transpose(rot[][]) | 
| 132 | 
  | 
 | 
| 133 | 
< | 
    A = rot * A; //? A = A* rot.transpose(); | 
| 133 | 
> | 
    // This code comes from converting an algorithm detailed in  | 
| 134 | 
> | 
    // J. Chem. Phys. 107 (15), pp. 5840-5851 by Dullweber,  | 
| 135 | 
> | 
    // Leimkuhler and McLachlan (DLM) for use in our code. | 
| 136 | 
> | 
    // In Appendix A, the DLM paper has the change to the rotation  | 
| 137 | 
> | 
    // matrix as: Q = Q * rot.transpose(), but our rotation matrix  | 
| 138 | 
> | 
    // A is actually equivalent to Q.transpose(). This fact can be  | 
| 139 | 
> | 
    // seen on page 5849 of the DLM paper where a lab frame  | 
| 140 | 
> | 
    // dipole \mu_i(t) is expressed in terms of a body-fixed | 
| 141 | 
> | 
    // reference orientation, \bar{\mu_i} and the rotation matrix, Q: | 
| 142 | 
> | 
    //  \mu_i(t) = Q * \bar{\mu_i} | 
| 143 | 
> | 
    // Our code computes lab frame vectors from body-fixed reference | 
| 144 | 
> | 
    // vectors using: | 
| 145 | 
> | 
    //   v_{lab} = A.transpose() * v_{body} | 
| 146 | 
> | 
    //  (See StuntDouble.hpp for confirmation of this fact). | 
| 147 | 
> | 
    // | 
| 148 | 
> | 
    // So, using the identity: | 
| 149 | 
> | 
    //  (A * B).transpose() = B.transpose() * A.transpose(),  we | 
| 150 | 
> | 
    // get the equivalent of Q = Q * rot.transpose() for our code to be: | 
| 151 | 
> | 
 | 
| 152 | 
> | 
    A = rot * A; | 
| 153 | 
  | 
   | 
| 154 | 
  | 
  } | 
| 155 | 
  | 
 |