| 1 | /* | 
| 2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Redistributions of source code must retain the above copyright | 
| 10 | *    notice, this list of conditions and the following disclaimer. | 
| 11 | * | 
| 12 | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | *    notice, this list of conditions and the following disclaimer in the | 
| 14 | *    documentation and/or other materials provided with the | 
| 15 | *    distribution. | 
| 16 | * | 
| 17 | * This software is provided "AS IS," without a warranty of any | 
| 18 | * kind. All express or implied conditions, representations and | 
| 19 | * warranties, including any implied warranty of merchantability, | 
| 20 | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 | * be liable for any damages suffered by licensee as a result of | 
| 23 | * using, modifying or distributing the software or its | 
| 24 | * derivatives. In no event will the University of Notre Dame or its | 
| 25 | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 | * direct, indirect, special, consequential, incidental or punitive | 
| 27 | * damages, however caused and regardless of the theory of liability, | 
| 28 | * arising out of the use of or inability to use software, even if the | 
| 29 | * University of Notre Dame has been advised of the possibility of | 
| 30 | * such damages. | 
| 31 | * | 
| 32 | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | * research, please cite the appropriate papers when you publish your | 
| 34 | * work.  Good starting points are: | 
| 35 | * | 
| 36 | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). | 
| 39 | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | */ | 
| 42 |  | 
| 43 | #include "DLM.hpp" | 
| 44 |  | 
| 45 | namespace OpenMD { | 
| 46 |  | 
| 47 | void DLM::doRotate(StuntDouble* sd, Vector3d& ji, RealType dt) { | 
| 48 | RealType dt2 = 0.5 * dt; | 
| 49 | RealType angle; | 
| 50 |  | 
| 51 | RotMat3x3d A = sd->getA(); | 
| 52 | Mat3x3d I = sd->getI(); | 
| 53 |  | 
| 54 | // use the angular velocities to propagate the rotation matrix a full time step | 
| 55 | if (sd->isLinear()) { | 
| 56 |  | 
| 57 | int i = sd->linearAxis(); | 
| 58 | int j = (i+1)%3; | 
| 59 | int k = (i+2)%3; | 
| 60 |  | 
| 61 | angle = dt2 * ji[j] / I(j, j); | 
| 62 | rotateStep( k, i, angle, ji, A ); | 
| 63 |  | 
| 64 | angle = dt * ji[k] / I(k, k); | 
| 65 | rotateStep( i, j, angle, ji, A); | 
| 66 |  | 
| 67 | angle = dt2 * ji[j] / I(j, j); | 
| 68 | rotateStep( k, i, angle, ji, A ); | 
| 69 |  | 
| 70 | } else { | 
| 71 | // rotate about the x-axis | 
| 72 | angle = dt2 * ji[0] / I(0, 0); | 
| 73 | rotateStep( 1, 2, angle, ji, A ); | 
| 74 |  | 
| 75 | // rotate about the y-axis | 
| 76 | angle = dt2 * ji[1] / I(1, 1); | 
| 77 | rotateStep( 2, 0, angle, ji, A ); | 
| 78 |  | 
| 79 | // rotate about the z-axis | 
| 80 | angle = dt * ji[2] / I(2, 2); | 
| 81 | rotateStep( 0, 1, angle, ji, A); | 
| 82 |  | 
| 83 | // rotate about the y-axis | 
| 84 | angle = dt2 * ji[1] / I(1, 1); | 
| 85 | rotateStep( 2, 0, angle, ji, A ); | 
| 86 |  | 
| 87 | // rotate about the x-axis | 
| 88 | angle = dt2 * ji[0] / I(0, 0); | 
| 89 | rotateStep( 1, 2, angle, ji, A ); | 
| 90 |  | 
| 91 | } | 
| 92 |  | 
| 93 | sd->setA( A  ); | 
| 94 | } | 
| 95 |  | 
| 96 |  | 
| 97 | void DLM::rotateStep(int axes1, int axes2, RealType angle, Vector3d& ji, RotMat3x3d& A) { | 
| 98 |  | 
| 99 | RealType sinAngle; | 
| 100 | RealType cosAngle; | 
| 101 | RealType angleSqr; | 
| 102 | RealType angleSqrOver4; | 
| 103 | RealType top, bottom; | 
| 104 |  | 
| 105 | RotMat3x3d tempA(A);  // initialize the tempA | 
| 106 | Vector3d tempJ(0.0); | 
| 107 |  | 
| 108 | RotMat3x3d rot = RotMat3x3d::identity(); // initalize rot as a unit matrix | 
| 109 |  | 
| 110 | // use a small angle aproximation for sin and cosine | 
| 111 |  | 
| 112 | angleSqr = angle * angle; | 
| 113 | angleSqrOver4 = angleSqr / 4.0; | 
| 114 | top = 1.0 - angleSqrOver4; | 
| 115 | bottom = 1.0 + angleSqrOver4; | 
| 116 |  | 
| 117 | cosAngle = top / bottom; | 
| 118 | sinAngle = angle / bottom; | 
| 119 |  | 
| 120 | // or don't use the small angle approximation: | 
| 121 | //cosAngle = cos(angle); | 
| 122 | //sinAngle = sin(angle); | 
| 123 | rot(axes1, axes1) = cosAngle; | 
| 124 | rot(axes2, axes2) = cosAngle; | 
| 125 |  | 
| 126 | rot(axes1, axes2) = sinAngle; | 
| 127 | rot(axes2, axes1) = -sinAngle; | 
| 128 |  | 
| 129 | // rotate the momentum acoording to: ji[] = rot[][] * ji[] | 
| 130 | ji = rot * ji; | 
| 131 |  | 
| 132 | // This code comes from converting an algorithm detailed in | 
| 133 | // J. Chem. Phys. 107 (15), pp. 5840-5851 by Dullweber, | 
| 134 | // Leimkuhler and McLachlan (DLM) for use in our code. | 
| 135 | // In Appendix A, the DLM paper has the change to the rotation | 
| 136 | // matrix as: Q = Q * rot.transpose(), but our rotation matrix | 
| 137 | // A is actually equivalent to Q.transpose(). This fact can be | 
| 138 | // seen on page 5849 of the DLM paper where a lab frame | 
| 139 | // dipole \mu_i(t) is expressed in terms of a body-fixed | 
| 140 | // reference orientation, \bar{\mu_i} and the rotation matrix, Q: | 
| 141 | //  \mu_i(t) = Q * \bar{\mu_i} | 
| 142 | // Our code computes lab frame vectors from body-fixed reference | 
| 143 | // vectors using: | 
| 144 | //   v_{lab} = A.transpose() * v_{body} | 
| 145 | //  (See StuntDouble.hpp for confirmation of this fact). | 
| 146 | // | 
| 147 | // So, using the identity: | 
| 148 | //  (A * B).transpose() = B.transpose() * A.transpose(),  we | 
| 149 | // get the equivalent of Q = Q * rot.transpose() for our code to be: | 
| 150 |  | 
| 151 | A = rot * A; | 
| 152 |  | 
| 153 | } | 
| 154 |  | 
| 155 |  | 
| 156 | } |