6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
+ |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
+ |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
#include <fstream> |
43 |
|
#include <iostream> |
44 |
|
#include "integrators/LDForceManager.hpp" |
45 |
|
#include "math/CholeskyDecomposition.hpp" |
46 |
< |
#include "utils/OOPSEConstant.hpp" |
46 |
> |
#include "utils/PhysicalConstants.hpp" |
47 |
|
#include "hydrodynamics/Sphere.hpp" |
48 |
|
#include "hydrodynamics/Ellipsoid.hpp" |
49 |
< |
#include "openbabel/mol.hpp" |
49 |
> |
#include "utils/ElementsTable.hpp" |
50 |
> |
#include "types/LennardJonesAdapter.hpp" |
51 |
> |
#include "types/GayBerneAdapter.hpp" |
52 |
|
|
53 |
< |
using namespace OpenBabel; |
51 |
< |
namespace oopse { |
53 |
> |
namespace OpenMD { |
54 |
|
|
55 |
< |
LDForceManager::LDForceManager(SimInfo* info) : ForceManager(info){ |
55 |
> |
LDForceManager::LDForceManager(SimInfo* info) : ForceManager(info), |
56 |
> |
maxIterNum_(4), |
57 |
> |
forceTolerance_(1e-6) { |
58 |
|
simParams = info->getSimParams(); |
59 |
|
veloMunge = new Velocitizer(info); |
60 |
|
|
67 |
|
sprintf( painCave.errMsg, |
68 |
|
"langevinBufferRadius must be specified " |
69 |
|
"when useSphericalBoundaryConditions is turned on.\n"); |
70 |
< |
painCave.severity = OOPSE_ERROR; |
70 |
> |
painCave.severity = OPENMD_ERROR; |
71 |
|
painCave.isFatal = 1; |
72 |
|
simError(); |
73 |
|
} |
78 |
|
sprintf( painCave.errMsg, |
79 |
|
"frozenBufferRadius must be specified " |
80 |
|
"when useSphericalBoundaryConditions is turned on.\n"); |
81 |
< |
painCave.severity = OOPSE_ERROR; |
81 |
> |
painCave.severity = OPENMD_ERROR; |
82 |
|
painCave.isFatal = 1; |
83 |
|
simError(); |
84 |
|
} |
87 |
|
sprintf( painCave.errMsg, |
88 |
|
"frozenBufferRadius has been set smaller than the " |
89 |
|
"langevinBufferRadius. This is probably an error.\n"); |
90 |
< |
painCave.severity = OOPSE_WARNING; |
90 |
> |
painCave.severity = OPENMD_WARNING; |
91 |
|
painCave.isFatal = 0; |
92 |
|
simError(); |
93 |
|
} |
97 |
|
std::map<std::string, HydroProp*> hydroPropMap; |
98 |
|
|
99 |
|
Molecule* mol; |
100 |
< |
StuntDouble* integrableObject; |
100 |
> |
StuntDouble* sd; |
101 |
|
SimInfo::MoleculeIterator i; |
102 |
|
Molecule::IntegrableObjectIterator j; |
103 |
|
bool needHydroPropFile = false; |
104 |
|
|
105 |
|
for (mol = info->beginMolecule(i); mol != NULL; |
106 |
|
mol = info->nextMolecule(i)) { |
107 |
< |
for (integrableObject = mol->beginIntegrableObject(j); |
108 |
< |
integrableObject != NULL; |
109 |
< |
integrableObject = mol->nextIntegrableObject(j)) { |
107 |
> |
|
108 |
> |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
109 |
> |
sd = mol->nextIntegrableObject(j)) { |
110 |
|
|
111 |
< |
if (integrableObject->isRigidBody()) { |
112 |
< |
RigidBody* rb = static_cast<RigidBody*>(integrableObject); |
111 |
> |
if (sd->isRigidBody()) { |
112 |
> |
RigidBody* rb = static_cast<RigidBody*>(sd); |
113 |
|
if (rb->getNumAtoms() > 1) needHydroPropFile = true; |
114 |
|
} |
115 |
|
|
122 |
|
hydroPropMap = parseFrictionFile(simParams->getHydroPropFile()); |
123 |
|
} else { |
124 |
|
sprintf( painCave.errMsg, |
125 |
< |
"HydroPropFile must be set to a file name if Langevin\n" |
126 |
< |
"\tDynamics is specified for rigidBodies which contain more\n" |
127 |
< |
"\tthan one atom. To create a HydroPropFile, run \"Hydro\".\n"); |
128 |
< |
painCave.severity = OOPSE_ERROR; |
125 |
> |
"HydroPropFile must be set to a file name if Langevin Dynamics\n" |
126 |
> |
"\tis specified for rigidBodies which contain more than one atom\n" |
127 |
> |
"\tTo create a HydroPropFile, run the \"Hydro\" program.\n"); |
128 |
> |
painCave.severity = OPENMD_ERROR; |
129 |
|
painCave.isFatal = 1; |
130 |
|
simError(); |
131 |
|
} |
132 |
|
|
133 |
|
for (mol = info->beginMolecule(i); mol != NULL; |
134 |
|
mol = info->nextMolecule(i)) { |
131 |
– |
for (integrableObject = mol->beginIntegrableObject(j); |
132 |
– |
integrableObject != NULL; |
133 |
– |
integrableObject = mol->nextIntegrableObject(j)) { |
135 |
|
|
136 |
< |
std::map<std::string, HydroProp*>::iterator iter = hydroPropMap.find(integrableObject->getType()); |
136 |
> |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
137 |
> |
sd = mol->nextIntegrableObject(j)) { |
138 |
> |
|
139 |
> |
std::map<std::string, HydroProp*>::iterator iter = hydroPropMap.find(sd->getType()); |
140 |
|
if (iter != hydroPropMap.end()) { |
141 |
|
hydroProps_.push_back(iter->second); |
142 |
|
} else { |
143 |
|
sprintf( painCave.errMsg, |
144 |
< |
"Can not find resistance tensor for atom [%s]\n", integrableObject->getType().c_str()); |
145 |
< |
painCave.severity = OOPSE_ERROR; |
144 |
> |
"Can not find resistance tensor for atom [%s]\n", sd->getType().c_str()); |
145 |
> |
painCave.severity = OPENMD_ERROR; |
146 |
|
painCave.isFatal = 1; |
147 |
|
simError(); |
148 |
|
} |
153 |
|
std::map<std::string, HydroProp*> hydroPropMap; |
154 |
|
for (mol = info->beginMolecule(i); mol != NULL; |
155 |
|
mol = info->nextMolecule(i)) { |
156 |
< |
for (integrableObject = mol->beginIntegrableObject(j); |
157 |
< |
integrableObject != NULL; |
158 |
< |
integrableObject = mol->nextIntegrableObject(j)) { |
156 |
> |
|
157 |
> |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
158 |
> |
sd = mol->nextIntegrableObject(j)) { |
159 |
> |
|
160 |
|
Shape* currShape = NULL; |
161 |
< |
if (integrableObject->isDirectionalAtom()) { |
162 |
< |
DirectionalAtom* dAtom = static_cast<DirectionalAtom*>(integrableObject); |
163 |
< |
AtomType* atomType = dAtom->getAtomType(); |
159 |
< |
if (atomType->isGayBerne()) { |
160 |
< |
DirectionalAtomType* dAtomType = dynamic_cast<DirectionalAtomType*>(atomType); |
161 |
< |
|
162 |
< |
GenericData* data = dAtomType->getPropertyByName("GayBerne"); |
163 |
< |
if (data != NULL) { |
164 |
< |
GayBerneParamGenericData* gayBerneData = dynamic_cast<GayBerneParamGenericData*>(data); |
165 |
< |
|
166 |
< |
if (gayBerneData != NULL) { |
167 |
< |
GayBerneParam gayBerneParam = gayBerneData->getData(); |
168 |
< |
currShape = new Ellipsoid(V3Zero, |
169 |
< |
gayBerneParam.GB_d / 2.0, |
170 |
< |
gayBerneParam.GB_l / 2.0, |
171 |
< |
Mat3x3d::identity()); |
172 |
< |
} else { |
173 |
< |
sprintf( painCave.errMsg, |
174 |
< |
"Can not cast GenericData to GayBerneParam\n"); |
175 |
< |
painCave.severity = OOPSE_ERROR; |
176 |
< |
painCave.isFatal = 1; |
177 |
< |
simError(); |
178 |
< |
} |
179 |
< |
} else { |
180 |
< |
sprintf( painCave.errMsg, "Can not find Parameters for GayBerne\n"); |
181 |
< |
painCave.severity = OOPSE_ERROR; |
182 |
< |
painCave.isFatal = 1; |
183 |
< |
simError(); |
184 |
< |
} |
185 |
< |
} |
186 |
< |
} else { |
187 |
< |
Atom* atom = static_cast<Atom*>(integrableObject); |
161 |
> |
|
162 |
> |
if (sd->isAtom()){ |
163 |
> |
Atom* atom = static_cast<Atom*>(sd); |
164 |
|
AtomType* atomType = atom->getAtomType(); |
165 |
< |
if (atomType->isLennardJones()){ |
166 |
< |
GenericData* data = atomType->getPropertyByName("LennardJones"); |
167 |
< |
if (data != NULL) { |
168 |
< |
LJParamGenericData* ljData = dynamic_cast<LJParamGenericData*>(data); |
169 |
< |
|
170 |
< |
if (ljData != NULL) { |
171 |
< |
LJParam ljParam = ljData->getData(); |
172 |
< |
currShape = new Sphere(atom->getPos(), ljParam.sigma/2.0); |
165 |
> |
GayBerneAdapter gba = GayBerneAdapter(atomType); |
166 |
> |
if (gba.isGayBerne()) { |
167 |
> |
currShape = new Ellipsoid(V3Zero, gba.getL() / 2.0, |
168 |
> |
gba.getD() / 2.0, |
169 |
> |
Mat3x3d::identity()); |
170 |
> |
} else { |
171 |
> |
LennardJonesAdapter lja = LennardJonesAdapter(atomType); |
172 |
> |
if (lja.isLennardJones()){ |
173 |
> |
currShape = new Sphere(atom->getPos(), lja.getSigma()/2.0); |
174 |
> |
} else { |
175 |
> |
int aNum = etab.GetAtomicNum((atom->getType()).c_str()); |
176 |
> |
if (aNum != 0) { |
177 |
> |
currShape = new Sphere(atom->getPos(), etab.GetVdwRad(aNum)); |
178 |
|
} else { |
179 |
|
sprintf( painCave.errMsg, |
180 |
< |
"Can not cast GenericData to LJParam\n"); |
181 |
< |
painCave.severity = OOPSE_ERROR; |
180 |
> |
"Could not find atom type in default element.txt\n"); |
181 |
> |
painCave.severity = OPENMD_ERROR; |
182 |
|
painCave.isFatal = 1; |
183 |
|
simError(); |
184 |
< |
} |
184 |
> |
} |
185 |
|
} |
205 |
– |
} else { |
206 |
– |
int obanum = etab.GetAtomicNum((atom->getType()).c_str()); |
207 |
– |
if (obanum != 0) { |
208 |
– |
currShape = new Sphere(atom->getPos(), etab.GetVdwRad(obanum)); |
209 |
– |
} else { |
210 |
– |
sprintf( painCave.errMsg, |
211 |
– |
"Could not find atom type in default element.txt\n"); |
212 |
– |
painCave.severity = OOPSE_ERROR; |
213 |
– |
painCave.isFatal = 1; |
214 |
– |
simError(); |
215 |
– |
} |
186 |
|
} |
187 |
|
} |
188 |
+ |
|
189 |
+ |
if (!simParams->haveTargetTemp()) { |
190 |
+ |
sprintf(painCave.errMsg, "You can't use LangevinDynamics without a targetTemp!\n"); |
191 |
+ |
painCave.isFatal = 1; |
192 |
+ |
painCave.severity = OPENMD_ERROR; |
193 |
+ |
simError(); |
194 |
+ |
} |
195 |
+ |
|
196 |
+ |
if (!simParams->haveViscosity()) { |
197 |
+ |
sprintf(painCave.errMsg, "You can't use LangevinDynamics without a viscosity!\n"); |
198 |
+ |
painCave.isFatal = 1; |
199 |
+ |
painCave.severity = OPENMD_ERROR; |
200 |
+ |
simError(); |
201 |
+ |
} |
202 |
+ |
|
203 |
+ |
|
204 |
|
HydroProp* currHydroProp = currShape->getHydroProp(simParams->getViscosity(),simParams->getTargetTemp()); |
205 |
< |
std::map<std::string, HydroProp*>::iterator iter = hydroPropMap.find(integrableObject->getType()); |
205 |
> |
std::map<std::string, HydroProp*>::iterator iter = hydroPropMap.find(sd->getType()); |
206 |
|
if (iter != hydroPropMap.end()) |
207 |
|
hydroProps_.push_back(iter->second); |
208 |
|
else { |
209 |
|
currHydroProp->complete(); |
210 |
< |
hydroPropMap.insert(std::map<std::string, HydroProp*>::value_type(integrableObject->getType(), currHydroProp)); |
210 |
> |
hydroPropMap.insert(std::map<std::string, HydroProp*>::value_type(sd->getType(), currHydroProp)); |
211 |
|
hydroProps_.push_back(currHydroProp); |
212 |
|
} |
213 |
+ |
delete currShape; |
214 |
|
} |
215 |
|
} |
216 |
|
} |
217 |
< |
variance_ = 2.0 * OOPSEConstant::kb*simParams->getTargetTemp()/simParams->getDt(); |
217 |
> |
variance_ = 2.0 * PhysicalConstants::kb*simParams->getTargetTemp()/simParams->getDt(); |
218 |
|
} |
219 |
|
|
220 |
|
std::map<std::string, HydroProp*> LDForceManager::parseFrictionFile(const std::string& filename) { |
234 |
|
return props; |
235 |
|
} |
236 |
|
|
237 |
< |
void LDForceManager::postCalculation() { |
237 |
> |
void LDForceManager::postCalculation(){ |
238 |
|
SimInfo::MoleculeIterator i; |
239 |
|
Molecule::IntegrableObjectIterator j; |
240 |
|
Molecule* mol; |
241 |
< |
StuntDouble* integrableObject; |
242 |
< |
Vector3d vel; |
241 |
> |
StuntDouble* sd; |
242 |
> |
RealType mass; |
243 |
|
Vector3d pos; |
244 |
|
Vector3d frc; |
245 |
|
Mat3x3d A; |
246 |
|
Mat3x3d Atrans; |
247 |
|
Vector3d Tb; |
248 |
|
Vector3d ji; |
262 |
– |
RealType mass; |
249 |
|
unsigned int index = 0; |
250 |
|
bool doLangevinForces; |
251 |
|
bool freezeMolecule; |
252 |
|
int fdf; |
267 |
– |
int nIntegrated; |
268 |
– |
int nFrozen; |
253 |
|
|
254 |
|
fdf = 0; |
255 |
|
|
275 |
|
} |
276 |
|
} |
277 |
|
|
278 |
< |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
279 |
< |
integrableObject = mol->nextIntegrableObject(j)) { |
278 |
> |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
279 |
> |
sd = mol->nextIntegrableObject(j)) { |
280 |
|
|
281 |
|
if (freezeMolecule) |
282 |
< |
fdf += integrableObject->freeze(); |
282 |
> |
fdf += sd->freeze(); |
283 |
|
|
284 |
|
if (doLangevinForces) { |
285 |
< |
vel =integrableObject->getVel(); |
286 |
< |
if (integrableObject->isDirectional()){ |
287 |
< |
//calculate angular velocity in lab frame |
288 |
< |
Mat3x3d I = integrableObject->getI(); |
289 |
< |
Vector3d angMom = integrableObject->getJ(); |
290 |
< |
Vector3d omega; |
307 |
< |
|
308 |
< |
if (integrableObject->isLinear()) { |
309 |
< |
int linearAxis = integrableObject->linearAxis(); |
310 |
< |
int l = (linearAxis +1 )%3; |
311 |
< |
int m = (linearAxis +2 )%3; |
312 |
< |
omega[l] = angMom[l] /I(l, l); |
313 |
< |
omega[m] = angMom[m] /I(m, m); |
314 |
< |
|
315 |
< |
} else { |
316 |
< |
omega[0] = angMom[0] /I(0, 0); |
317 |
< |
omega[1] = angMom[1] /I(1, 1); |
318 |
< |
omega[2] = angMom[2] /I(2, 2); |
319 |
< |
} |
320 |
< |
|
321 |
< |
//apply friction force and torque at center of resistance |
322 |
< |
A = integrableObject->getA(); |
285 |
> |
mass = sd->getMass(); |
286 |
> |
if (sd->isDirectional()){ |
287 |
> |
|
288 |
> |
// preliminaries for directional objects: |
289 |
> |
|
290 |
> |
A = sd->getA(); |
291 |
|
Atrans = A.transpose(); |
292 |
< |
Vector3d rcr = Atrans * hydroProps_[index]->getCOR(); |
293 |
< |
Vector3d vcdLab = vel + cross(omega, rcr); |
326 |
< |
Vector3d vcdBody = A* vcdLab; |
327 |
< |
Vector3d frictionForceBody = -(hydroProps_[index]->getXitt() * vcdBody + hydroProps_[index]->getXirt() * omega); |
328 |
< |
Vector3d frictionForceLab = Atrans*frictionForceBody; |
329 |
< |
integrableObject->addFrc(frictionForceLab); |
330 |
< |
Vector3d frictionTorqueBody = - (hydroProps_[index]->getXitr() * vcdBody + hydroProps_[index]->getXirr() * omega); |
331 |
< |
Vector3d frictionTorqueLab = Atrans*frictionTorqueBody; |
332 |
< |
integrableObject->addTrq(frictionTorqueLab+ cross(rcr, frictionForceLab)); |
333 |
< |
|
292 |
> |
Vector3d rcrLab = Atrans * hydroProps_[index]->getCOR(); |
293 |
> |
|
294 |
|
//apply random force and torque at center of resistance |
295 |
+ |
|
296 |
|
Vector3d randomForceBody; |
297 |
|
Vector3d randomTorqueBody; |
298 |
|
genRandomForceAndTorque(randomForceBody, randomTorqueBody, index, variance_); |
299 |
< |
Vector3d randomForceLab = Atrans*randomForceBody; |
300 |
< |
Vector3d randomTorqueLab = Atrans* randomTorqueBody; |
301 |
< |
integrableObject->addFrc(randomForceLab); |
302 |
< |
integrableObject->addTrq(randomTorqueLab + cross(rcr, randomForceLab )); |
299 |
> |
Vector3d randomForceLab = Atrans * randomForceBody; |
300 |
> |
Vector3d randomTorqueLab = Atrans * randomTorqueBody; |
301 |
> |
sd->addFrc(randomForceLab); |
302 |
> |
sd->addTrq(randomTorqueLab + cross(rcrLab, randomForceLab )); |
303 |
> |
|
304 |
> |
Mat3x3d I = sd->getI(); |
305 |
> |
Vector3d omegaBody; |
306 |
> |
|
307 |
> |
// What remains contains velocity explicitly, but the velocity required |
308 |
> |
// is at the full step: v(t + h), while we have initially the velocity |
309 |
> |
// at the half step: v(t + h/2). We need to iterate to converge the |
310 |
> |
// friction force and friction torque vectors. |
311 |
> |
|
312 |
> |
// this is the velocity at the half-step: |
313 |
|
|
314 |
+ |
Vector3d vel =sd->getVel(); |
315 |
+ |
Vector3d angMom = sd->getJ(); |
316 |
+ |
|
317 |
+ |
//estimate velocity at full-step using everything but friction forces: |
318 |
+ |
|
319 |
+ |
frc = sd->getFrc(); |
320 |
+ |
Vector3d velStep = vel + (dt2_ /mass * PhysicalConstants::energyConvert) * frc; |
321 |
+ |
|
322 |
+ |
Tb = sd->lab2Body(sd->getTrq()); |
323 |
+ |
Vector3d angMomStep = angMom + (dt2_ * PhysicalConstants::energyConvert) * Tb; |
324 |
+ |
|
325 |
+ |
Vector3d omegaLab; |
326 |
+ |
Vector3d vcdLab; |
327 |
+ |
Vector3d vcdBody; |
328 |
+ |
Vector3d frictionForceBody; |
329 |
+ |
Vector3d frictionForceLab(0.0); |
330 |
+ |
Vector3d oldFFL; // used to test for convergence |
331 |
+ |
Vector3d frictionTorqueBody(0.0); |
332 |
+ |
Vector3d oldFTB; // used to test for convergence |
333 |
+ |
Vector3d frictionTorqueLab; |
334 |
+ |
RealType fdot; |
335 |
+ |
RealType tdot; |
336 |
+ |
|
337 |
+ |
//iteration starts here: |
338 |
+ |
|
339 |
+ |
for (int k = 0; k < maxIterNum_; k++) { |
340 |
+ |
|
341 |
+ |
if (sd->isLinear()) { |
342 |
+ |
int linearAxis = sd->linearAxis(); |
343 |
+ |
int l = (linearAxis +1 )%3; |
344 |
+ |
int m = (linearAxis +2 )%3; |
345 |
+ |
omegaBody[l] = angMomStep[l] /I(l, l); |
346 |
+ |
omegaBody[m] = angMomStep[m] /I(m, m); |
347 |
+ |
|
348 |
+ |
} else { |
349 |
+ |
omegaBody[0] = angMomStep[0] /I(0, 0); |
350 |
+ |
omegaBody[1] = angMomStep[1] /I(1, 1); |
351 |
+ |
omegaBody[2] = angMomStep[2] /I(2, 2); |
352 |
+ |
} |
353 |
+ |
|
354 |
+ |
omegaLab = Atrans * omegaBody; |
355 |
+ |
|
356 |
+ |
// apply friction force and torque at center of resistance |
357 |
+ |
|
358 |
+ |
vcdLab = velStep + cross(omegaLab, rcrLab); |
359 |
+ |
vcdBody = A * vcdLab; |
360 |
+ |
frictionForceBody = -(hydroProps_[index]->getXitt() * vcdBody + hydroProps_[index]->getXirt() * omegaBody); |
361 |
+ |
oldFFL = frictionForceLab; |
362 |
+ |
frictionForceLab = Atrans * frictionForceBody; |
363 |
+ |
oldFTB = frictionTorqueBody; |
364 |
+ |
frictionTorqueBody = -(hydroProps_[index]->getXitr() * vcdBody + hydroProps_[index]->getXirr() * omegaBody); |
365 |
+ |
frictionTorqueLab = Atrans * frictionTorqueBody; |
366 |
+ |
|
367 |
+ |
// re-estimate velocities at full-step using friction forces: |
368 |
+ |
|
369 |
+ |
velStep = vel + (dt2_ / mass * PhysicalConstants::energyConvert) * (frc + frictionForceLab); |
370 |
+ |
angMomStep = angMom + (dt2_ * PhysicalConstants::energyConvert) * (Tb + frictionTorqueBody); |
371 |
+ |
|
372 |
+ |
// check for convergence (if the vectors have converged, fdot and tdot will both be 1.0): |
373 |
+ |
|
374 |
+ |
fdot = dot(frictionForceLab, oldFFL) / frictionForceLab.lengthSquare(); |
375 |
+ |
tdot = dot(frictionTorqueBody, oldFTB) / frictionTorqueBody.lengthSquare(); |
376 |
+ |
|
377 |
+ |
if (fabs(1.0 - fdot) <= forceTolerance_ && fabs(1.0 - tdot) <= forceTolerance_) |
378 |
+ |
break; // iteration ends here |
379 |
+ |
} |
380 |
+ |
|
381 |
+ |
sd->addFrc(frictionForceLab); |
382 |
+ |
sd->addTrq(frictionTorqueLab + cross(rcrLab, frictionForceLab)); |
383 |
+ |
|
384 |
+ |
|
385 |
|
} else { |
386 |
|
//spherical atom |
387 |
< |
Vector3d frictionForce = -(hydroProps_[index]->getXitt() * vel); |
387 |
> |
|
388 |
|
Vector3d randomForce; |
389 |
|
Vector3d randomTorque; |
390 |
|
genRandomForceAndTorque(randomForce, randomTorque, index, variance_); |
391 |
+ |
sd->addFrc(randomForce); |
392 |
+ |
|
393 |
+ |
// What remains contains velocity explicitly, but the velocity required |
394 |
+ |
// is at the full step: v(t + h), while we have initially the velocity |
395 |
+ |
// at the half step: v(t + h/2). We need to iterate to converge the |
396 |
+ |
// friction force vector. |
397 |
+ |
|
398 |
+ |
// this is the velocity at the half-step: |
399 |
|
|
400 |
< |
integrableObject->addFrc(frictionForce+randomForce); |
400 |
> |
Vector3d vel =sd->getVel(); |
401 |
> |
|
402 |
> |
//estimate velocity at full-step using everything but friction forces: |
403 |
> |
|
404 |
> |
frc = sd->getFrc(); |
405 |
> |
Vector3d velStep = vel + (dt2_ / mass * PhysicalConstants::energyConvert) * frc; |
406 |
> |
|
407 |
> |
Vector3d frictionForce(0.0); |
408 |
> |
Vector3d oldFF; // used to test for convergence |
409 |
> |
RealType fdot; |
410 |
> |
|
411 |
> |
//iteration starts here: |
412 |
> |
|
413 |
> |
for (int k = 0; k < maxIterNum_; k++) { |
414 |
> |
|
415 |
> |
oldFF = frictionForce; |
416 |
> |
frictionForce = -hydroProps_[index]->getXitt() * velStep; |
417 |
> |
|
418 |
> |
// re-estimate velocities at full-step using friction forces: |
419 |
> |
|
420 |
> |
velStep = vel + (dt2_ / mass * PhysicalConstants::energyConvert) * (frc + frictionForce); |
421 |
> |
|
422 |
> |
// check for convergence (if the vector has converged, fdot will be 1.0): |
423 |
> |
|
424 |
> |
fdot = dot(frictionForce, oldFF) / frictionForce.lengthSquare(); |
425 |
> |
|
426 |
> |
if (fabs(1.0 - fdot) <= forceTolerance_) |
427 |
> |
break; // iteration ends here |
428 |
> |
} |
429 |
> |
|
430 |
> |
sd->addFrc(frictionForce); |
431 |
> |
|
432 |
|
} |
433 |
|
} |
434 |
|
|
451 |
|
|
452 |
|
Vector<RealType, 6> Z; |
453 |
|
Vector<RealType, 6> generalForce; |
373 |
– |
|
454 |
|
|
455 |
|
Z[0] = randNumGen_.randNorm(0, variance); |
456 |
|
Z[1] = randNumGen_.randNorm(0, variance); |
459 |
|
Z[4] = randNumGen_.randNorm(0, variance); |
460 |
|
Z[5] = randNumGen_.randNorm(0, variance); |
461 |
|
|
382 |
– |
|
462 |
|
generalForce = hydroProps_[index]->getS()*Z; |
463 |
|
|
464 |
|
force[0] = generalForce[0]; |
468 |
|
torque[1] = generalForce[4]; |
469 |
|
torque[2] = generalForce[5]; |
470 |
|
|
471 |
< |
} |
471 |
> |
} |
472 |
|
|
473 |
|
} |