ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/integrators/LDForceManager.cpp
(Generate patch)

Comparing trunk/src/integrators/LDForceManager.cpp (file contents):
Revision 904 by tim, Thu Mar 16 22:50:48 2006 UTC vs.
Revision 2071 by gezelter, Sat Mar 7 21:41:51 2015 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42   #include <fstream>
43 + #include <iostream>
44   #include "integrators/LDForceManager.hpp"
45   #include "math/CholeskyDecomposition.hpp"
46 < #include "utils/OOPSEConstant.hpp"
47 < namespace oopse {
46 > #include "utils/PhysicalConstants.hpp"
47 > #include "hydrodynamics/Sphere.hpp"
48 > #include "hydrodynamics/Ellipsoid.hpp"
49 > #include "utils/ElementsTable.hpp"
50 > #include "types/LennardJonesAdapter.hpp"
51 > #include "types/GayBerneAdapter.hpp"
52  
53 <  LDForceManager::LDForceManager(SimInfo* info) : ForceManager(info){
54 <    Globals* simParams = info->getSimParams();
55 <    std::map<std::string, HydroProp> hydroPropMap;
56 <    if (simParams->haveHydroPropFile()) {
57 <        hydroPropMap = parseFrictionFile(simParams->getHydroPropFile());
58 <    } else {
59 <        //error
53 > namespace OpenMD {
54 >
55 >  LDForceManager::LDForceManager(SimInfo* info) : ForceManager(info),
56 >                                                  maxIterNum_(4),
57 >                                                  forceTolerance_(1e-6) {
58 >    simParams = info->getSimParams();
59 >    veloMunge = new Velocitizer(info);
60 >
61 >    sphericalBoundaryConditions_ = false;
62 >    if (simParams->getUseSphericalBoundaryConditions()) {
63 >      sphericalBoundaryConditions_ = true;
64 >      if (simParams->haveLangevinBufferRadius()) {
65 >        langevinBufferRadius_ = simParams->getLangevinBufferRadius();
66 >      } else {
67 >        sprintf( painCave.errMsg,
68 >                 "langevinBufferRadius must be specified "
69 >                 "when useSphericalBoundaryConditions is turned on.\n");
70 >        painCave.severity = OPENMD_ERROR;
71 >        painCave.isFatal = 1;
72 >        simError();  
73 >      }
74 >    
75 >      if (simParams->haveFrozenBufferRadius()) {
76 >        frozenBufferRadius_ = simParams->getFrozenBufferRadius();
77 >      } else {
78 >        sprintf( painCave.errMsg,
79 >                 "frozenBufferRadius must be specified "
80 >                 "when useSphericalBoundaryConditions is turned on.\n");
81 >        painCave.severity = OPENMD_ERROR;
82 >        painCave.isFatal = 1;
83 >        simError();  
84 >      }
85 >
86 >      if (frozenBufferRadius_ < langevinBufferRadius_) {
87 >        sprintf( painCave.errMsg,
88 >                 "frozenBufferRadius has been set smaller than the "
89 >                 "langevinBufferRadius.  This is probably an error.\n");
90 >        painCave.severity = OPENMD_WARNING;
91 >        painCave.isFatal = 0;
92 >        simError();  
93 >      }
94      }
95  
96 <    SimInfo::MoleculeIterator i;
97 <    Molecule::IntegrableObjectIterator  j;
96 >    // Build the hydroProp map:
97 >    std::map<std::string, HydroProp*> hydroPropMap;
98 >
99      Molecule* mol;
100 <    StuntDouble* integrableObject;
101 <    for (mol = info->beginMolecule(i); mol != NULL; mol = info->nextMolecule(i)) {
102 <      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
103 <              integrableObject = mol->nextIntegrableObject(j)) {
104 <            std::map<std::string, HydroProp>::iterator iter = hydroPropMap.find(integrableObject->getType());
105 <            if (iter != hydroPropMap.end()) {
106 <                hydroProps_.push_back(iter->second);
66 <            } else {
67 <                //error
68 <            }
69 <            
70 <           }
71 <    }
72 <    variance_ = 2.0 * OOPSEConstant::kb*simParams->getTargetTemp()/simParams->getDt();
73 <  }
74 <  std::map<std::string, HydroProp> LDForceManager::parseFrictionFile(const std::string& filename) {
75 <    std::map<std::string, HydroProp> props;
76 <    std::ifstream ifs(filename.c_str());
77 <    if (ifs.is_open()) {
100 >    StuntDouble* sd;
101 >    SimInfo::MoleculeIterator i;
102 >    Molecule::IntegrableObjectIterator  j;              
103 >    bool needHydroPropFile = false;
104 >    
105 >    for (mol = info->beginMolecule(i); mol != NULL;
106 >         mol = info->nextMolecule(i)) {
107  
108 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
109 +           sd = mol->nextIntegrableObject(j)) {
110 +        
111 +        if (sd->isRigidBody()) {
112 +          RigidBody* rb = static_cast<RigidBody*>(sd);
113 +          if (rb->getNumAtoms() > 1) needHydroPropFile = true;
114 +        }
115 +        
116 +      }
117      }
118 +        
119  
120 <    const unsigned int BufferSize = 65535;
121 <    char buffer[BufferSize];  
122 <    while (ifs.getline(buffer, BufferSize)) {
123 <        StringTokenizer tokenizer(buffer);
124 <        HydroProp currProp;
125 <        if (tokenizer.countTokens() >= 67) {
126 <            std::string atomName = tokenizer.nextToken();
127 <            currProp.cod[0] = tokenizer.nextTokenAsDouble();
128 <            currProp.cod[1] = tokenizer.nextTokenAsDouble();
129 <            currProp.cod[2] = tokenizer.nextTokenAsDouble();
120 >    if (needHydroPropFile) {              
121 >      if (simParams->haveHydroPropFile()) {
122 >        hydroPropMap = parseFrictionFile(simParams->getHydroPropFile());
123 >      } else {              
124 >        sprintf( painCave.errMsg,
125 >                 "HydroPropFile must be set to a file name if Langevin Dynamics\n"
126 >                 "\tis specified for rigidBodies which contain more than one atom\n"
127 >                 "\tTo create a HydroPropFile, run the \"Hydro\" program.\n");
128 >        painCave.severity = OPENMD_ERROR;
129 >        painCave.isFatal = 1;
130 >        simError();  
131 >      }      
132  
133 <            currProp.Ddtt(0,0) = tokenizer.nextTokenAsDouble();
134 <            currProp.Ddtt(0,1) = tokenizer.nextTokenAsDouble();
94 <            currProp.Ddtt(0,2) = tokenizer.nextTokenAsDouble();
95 <            currProp.Ddtt(1,0) = tokenizer.nextTokenAsDouble();
96 <            currProp.Ddtt(1,1) = tokenizer.nextTokenAsDouble();
97 <            currProp.Ddtt(1,2) = tokenizer.nextTokenAsDouble();
98 <            currProp.Ddtt(2,0) = tokenizer.nextTokenAsDouble();
99 <            currProp.Ddtt(2,1) = tokenizer.nextTokenAsDouble();
100 <            currProp.Ddtt(2,2) = tokenizer.nextTokenAsDouble();
133 >      for (mol = info->beginMolecule(i); mol != NULL;
134 >           mol = info->nextMolecule(i)) {
135  
136 <            currProp.Ddtr(0,0) = tokenizer.nextTokenAsDouble();
137 <            currProp.Ddtr(0,1) = tokenizer.nextTokenAsDouble();
104 <            currProp.Ddtr(0,2) = tokenizer.nextTokenAsDouble();
105 <            currProp.Ddtr(1,0) = tokenizer.nextTokenAsDouble();
106 <            currProp.Ddtr(1,1) = tokenizer.nextTokenAsDouble();
107 <            currProp.Ddtr(1,2) = tokenizer.nextTokenAsDouble();
108 <            currProp.Ddtr(2,0) = tokenizer.nextTokenAsDouble();
109 <            currProp.Ddtr(2,1) = tokenizer.nextTokenAsDouble();
110 <            currProp.Ddtr(2,2) = tokenizer.nextTokenAsDouble();
136 >        for (sd = mol->beginIntegrableObject(j);  sd != NULL;
137 >             sd = mol->nextIntegrableObject(j)) {
138  
139 <            currProp.Ddrr(0,0) = tokenizer.nextTokenAsDouble();
140 <            currProp.Ddrr(0,1) = tokenizer.nextTokenAsDouble();
141 <            currProp.Ddrr(0,2) = tokenizer.nextTokenAsDouble();
142 <            currProp.Ddrr(1,0) = tokenizer.nextTokenAsDouble();
143 <            currProp.Ddrr(1,1) = tokenizer.nextTokenAsDouble();
144 <            currProp.Ddrr(1,2) = tokenizer.nextTokenAsDouble();
145 <            currProp.Ddrr(2,0) = tokenizer.nextTokenAsDouble();
146 <            currProp.Ddrr(2,1) = tokenizer.nextTokenAsDouble();
147 <            currProp.Ddrr(2,2) = tokenizer.nextTokenAsDouble();                
139 >          std::map<std::string, HydroProp*>::iterator iter = hydroPropMap.find(sd->getType());
140 >          if (iter != hydroPropMap.end()) {
141 >            hydroProps_.push_back(iter->second);
142 >          } else {
143 >            sprintf( painCave.errMsg,
144 >                     "Can not find resistance tensor for atom [%s]\n", sd->getType().c_str());
145 >            painCave.severity = OPENMD_ERROR;
146 >            painCave.isFatal = 1;
147 >            simError();  
148 >          }        
149 >        }
150 >      }
151 >    } else {
152 >      
153 >      std::map<std::string, HydroProp*> hydroPropMap;
154 >      for (mol = info->beginMolecule(i); mol != NULL;
155 >           mol = info->nextMolecule(i)) {
156  
157 <            currProp.Xidtt(0,0) = tokenizer.nextTokenAsDouble();
158 <            currProp.Xidtt(0,1) = tokenizer.nextTokenAsDouble();
124 <            currProp.Xidtt(0,2) = tokenizer.nextTokenAsDouble();
125 <            currProp.Xidtt(1,0) = tokenizer.nextTokenAsDouble();
126 <            currProp.Xidtt(1,1) = tokenizer.nextTokenAsDouble();
127 <            currProp.Xidtt(1,2) = tokenizer.nextTokenAsDouble();
128 <            currProp.Xidtt(2,0) = tokenizer.nextTokenAsDouble();
129 <            currProp.Xidtt(2,1) = tokenizer.nextTokenAsDouble();
130 <            currProp.Xidtt(2,2) = tokenizer.nextTokenAsDouble();
157 >        for (sd = mol->beginIntegrableObject(j); sd != NULL;
158 >             sd = mol->nextIntegrableObject(j)) {
159  
160 <            currProp.Xidrt(0,0) = tokenizer.nextTokenAsDouble();
133 <            currProp.Xidrt(0,1) = tokenizer.nextTokenAsDouble();
134 <            currProp.Xidrt(0,2) = tokenizer.nextTokenAsDouble();
135 <            currProp.Xidrt(1,0) = tokenizer.nextTokenAsDouble();
136 <            currProp.Xidrt(1,1) = tokenizer.nextTokenAsDouble();
137 <            currProp.Xidrt(1,2) = tokenizer.nextTokenAsDouble();
138 <            currProp.Xidrt(2,0) = tokenizer.nextTokenAsDouble();
139 <            currProp.Xidrt(2,1) = tokenizer.nextTokenAsDouble();
140 <            currProp.Xidrt(2,2) = tokenizer.nextTokenAsDouble();
141 <            
142 <            currProp.Xidtr(0,0) = tokenizer.nextTokenAsDouble();
143 <            currProp.Xidtr(0,1) = tokenizer.nextTokenAsDouble();
144 <            currProp.Xidtr(0,2) = tokenizer.nextTokenAsDouble();
145 <            currProp.Xidtr(1,0) = tokenizer.nextTokenAsDouble();
146 <            currProp.Xidtr(1,1) = tokenizer.nextTokenAsDouble();
147 <            currProp.Xidtr(1,2) = tokenizer.nextTokenAsDouble();
148 <            currProp.Xidtr(2,0) = tokenizer.nextTokenAsDouble();
149 <            currProp.Xidtr(2,1) = tokenizer.nextTokenAsDouble();
150 <            currProp.Xidtr(2,2) = tokenizer.nextTokenAsDouble();
160 >          Shape* currShape = NULL;
161  
162 <            currProp.Xidrr(0,0) = tokenizer.nextTokenAsDouble();
163 <            currProp.Xidrr(0,1) = tokenizer.nextTokenAsDouble();
164 <            currProp.Xidrr(0,2) = tokenizer.nextTokenAsDouble();
165 <            currProp.Xidrr(1,0) = tokenizer.nextTokenAsDouble();
166 <            currProp.Xidrr(1,1) = tokenizer.nextTokenAsDouble();
167 <            currProp.Xidrr(1,2) = tokenizer.nextTokenAsDouble();
168 <            currProp.Xidrr(2,0) = tokenizer.nextTokenAsDouble();
169 <            currProp.Xidrr(2,1) = tokenizer.nextTokenAsDouble();
170 <            currProp.Xidrr(2,2) = tokenizer.nextTokenAsDouble();
171 <            props.insert(std::map<std::string, HydroProp>::value_type(atomName, currProp));
162 >          if (sd->isAtom()){
163 >            Atom* atom = static_cast<Atom*>(sd);
164 >            AtomType* atomType = atom->getAtomType();
165 >            GayBerneAdapter gba = GayBerneAdapter(atomType);
166 >            if (gba.isGayBerne()) {
167 >              currShape = new Ellipsoid(V3Zero, gba.getL() / 2.0,
168 >                                        gba.getD() / 2.0,
169 >                                        Mat3x3d::identity());
170 >            } else {
171 >              LennardJonesAdapter lja = LennardJonesAdapter(atomType);
172 >              if (lja.isLennardJones()){
173 >                currShape = new Sphere(atom->getPos(), lja.getSigma()/2.0);
174 >              } else {
175 >                int aNum = etab.GetAtomicNum((atom->getType()).c_str());
176 >                if (aNum != 0) {
177 >                  currShape = new Sphere(atom->getPos(), etab.GetVdwRad(aNum));
178 >                } else {
179 >                  sprintf( painCave.errMsg,
180 >                           "Could not find atom type in default element.txt\n");
181 >                  painCave.severity = OPENMD_ERROR;
182 >                  painCave.isFatal = 1;
183 >                  simError();          
184 >                }
185 >              }
186 >            }
187 >          }
188 >
189 >          if (!simParams->haveTargetTemp()) {
190 >            sprintf(painCave.errMsg, "You can't use LangevinDynamics without a targetTemp!\n");
191 >            painCave.isFatal = 1;
192 >            painCave.severity = OPENMD_ERROR;
193 >            simError();
194 >          }
195 >
196 >          if (!simParams->haveViscosity()) {
197 >            sprintf(painCave.errMsg, "You can't use LangevinDynamics without a viscosity!\n");
198 >            painCave.isFatal = 1;
199 >            painCave.severity = OPENMD_ERROR;
200 >            simError();
201 >          }
202 >
203 >
204 >          HydroProp* currHydroProp = currShape->getHydroProp(simParams->getViscosity(),simParams->getTargetTemp());
205 >          std::map<std::string, HydroProp*>::iterator iter = hydroPropMap.find(sd->getType());
206 >          if (iter != hydroPropMap.end())
207 >            hydroProps_.push_back(iter->second);
208 >          else {
209 >            currHydroProp->complete();
210 >            hydroPropMap.insert(std::map<std::string, HydroProp*>::value_type(sd->getType(), currHydroProp));
211 >            hydroProps_.push_back(currHydroProp);
212 >          }
213 >          delete currShape;
214          }
215 +      }
216      }
217 +    variance_ = 2.0 * PhysicalConstants::kb*simParams->getTargetTemp()/simParams->getDt();
218 +  }  
219  
220 +  std::map<std::string, HydroProp*> LDForceManager::parseFrictionFile(const std::string& filename) {
221 +    std::map<std::string, HydroProp*> props;
222 +    std::ifstream ifs(filename.c_str());
223 +    if (ifs.is_open()) {
224 +      
225 +    }
226 +    
227 +    const unsigned int BufferSize = 65535;
228 +    char buffer[BufferSize];  
229 +    while (ifs.getline(buffer, BufferSize)) {
230 +      HydroProp* currProp = new HydroProp(buffer);
231 +      props.insert(std::map<std::string, HydroProp*>::value_type(currProp->getName(), currProp));
232 +    }
233 +
234      return props;
235    }
236 <  
237 <  void LDForceManager::postCalculation() {
236 >  
237 >  void LDForceManager::postCalculation(){
238      SimInfo::MoleculeIterator i;
239      Molecule::IntegrableObjectIterator  j;
240      Molecule* mol;
241 <    StuntDouble* integrableObject;
242 <    Vector3d vel;
241 >    StuntDouble* sd;
242 >    RealType mass;
243      Vector3d pos;
244      Vector3d frc;
245      Mat3x3d A;
246      Mat3x3d Atrans;
247      Vector3d Tb;
248      Vector3d ji;
180    double mass;
249      unsigned int index = 0;
250 +    bool doLangevinForces;
251 +    bool freezeMolecule;
252 +    int fdf;
253 +
254 +    fdf = 0;
255 +
256      for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
183      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
184           integrableObject = mol->nextIntegrableObject(j)) {
257  
258 <          vel =integrableObject->getVel();
259 <          if (integrableObject->isDirectional()){
188 <             //calculate angular velocity in lab frame
189 <             Mat3x3d I = integrableObject->getI();
190 <             Vector3d angMom = integrableObject->getJ();
191 <             Vector3d omega;
258 >      doLangevinForces = true;          
259 >      freezeMolecule = false;
260  
261 <             if (integrableObject->isLinear()) {
262 <                int linearAxis = integrableObject->linearAxis();
261 >      if (sphericalBoundaryConditions_) {
262 >        
263 >        Vector3d molPos = mol->getCom();
264 >        RealType molRad = molPos.length();
265 >
266 >        doLangevinForces = false;
267 >        
268 >        if (molRad > langevinBufferRadius_) {
269 >          doLangevinForces = true;
270 >          freezeMolecule = false;
271 >        }
272 >        if (molRad > frozenBufferRadius_) {
273 >          doLangevinForces = false;
274 >          freezeMolecule = true;
275 >        }
276 >      }
277 >      
278 >      for (sd = mol->beginIntegrableObject(j); sd != NULL;
279 >           sd = mol->nextIntegrableObject(j)) {
280 >          
281 >        if (freezeMolecule)
282 >          fdf += sd->freeze();
283 >        
284 >        if (doLangevinForces) {  
285 >          mass = sd->getMass();
286 >          if (sd->isDirectional()){
287 >
288 >            // preliminaries for directional objects:
289 >
290 >            A = sd->getA();
291 >            Atrans = A.transpose();
292 >            Vector3d rcrLab = Atrans * hydroProps_[index]->getCOR();  
293 >
294 >            //apply random force and torque at center of resistance
295 >
296 >            Vector3d randomForceBody;
297 >            Vector3d randomTorqueBody;
298 >            genRandomForceAndTorque(randomForceBody, randomTorqueBody, index, variance_);
299 >            Vector3d randomForceLab = Atrans * randomForceBody;
300 >            Vector3d randomTorqueLab = Atrans * randomTorqueBody;
301 >            sd->addFrc(randomForceLab);            
302 >            sd->addTrq(randomTorqueLab + cross(rcrLab, randomForceLab ));            
303 >
304 >            Mat3x3d I = sd->getI();
305 >            Vector3d omegaBody;
306 >
307 >            // What remains contains velocity explicitly, but the velocity required
308 >            // is at the full step: v(t + h), while we have initially the velocity
309 >            // at the half step: v(t + h/2).  We need to iterate to converge the
310 >            // friction force and friction torque vectors.
311 >
312 >            // this is the velocity at the half-step:
313 >            
314 >            Vector3d vel =sd->getVel();
315 >            Vector3d angMom = sd->getJ();
316 >
317 >            //estimate velocity at full-step using everything but friction forces:          
318 >
319 >            frc = sd->getFrc();
320 >            Vector3d velStep = vel + (dt2_ /mass * PhysicalConstants::energyConvert) * frc;
321 >
322 >            Tb = sd->lab2Body(sd->getTrq());
323 >            Vector3d angMomStep = angMom + (dt2_ * PhysicalConstants::energyConvert) * Tb;                            
324 >
325 >            Vector3d omegaLab;
326 >            Vector3d vcdLab;
327 >            Vector3d vcdBody;
328 >            Vector3d frictionForceBody;
329 >            Vector3d frictionForceLab(0.0);
330 >            Vector3d oldFFL;  // used to test for convergence
331 >            Vector3d frictionTorqueBody(0.0);
332 >            Vector3d oldFTB;  // used to test for convergence
333 >            Vector3d frictionTorqueLab;
334 >            RealType fdot;
335 >            RealType tdot;
336 >
337 >            //iteration starts here:
338 >
339 >            for (int k = 0; k < maxIterNum_; k++) {
340 >                            
341 >              if (sd->isLinear()) {
342 >                int linearAxis = sd->linearAxis();
343                  int l = (linearAxis +1 )%3;
344                  int m = (linearAxis +2 )%3;
345 <                omega[l] = angMom[l] /I(l, l);
346 <                omega[m] = angMom[m] /I(m, m);
345 >                omegaBody[l] = angMomStep[l] /I(l, l);
346 >                omegaBody[m] = angMomStep[m] /I(m, m);
347                  
348 <             } else {
349 <                 omega[0] = angMom[0] /I(0, 0);
350 <                 omega[1] = angMom[1] /I(1, 1);
351 <                 omega[2] = angMom[2] /I(2, 2);
352 <             }
348 >              } else {
349 >                omegaBody[0] = angMomStep[0] /I(0, 0);
350 >                omegaBody[1] = angMomStep[1] /I(1, 1);
351 >                omegaBody[2] = angMomStep[2] /I(2, 2);
352 >              }
353 >              
354 >              omegaLab = Atrans * omegaBody;
355 >              
356 >              // apply friction force and torque at center of resistance
357 >              
358 >              vcdLab = velStep + cross(omegaLab, rcrLab);      
359 >              vcdBody = A * vcdLab;
360 >              frictionForceBody = -(hydroProps_[index]->getXitt() * vcdBody + hydroProps_[index]->getXirt() * omegaBody);
361 >              oldFFL = frictionForceLab;
362 >              frictionForceLab = Atrans * frictionForceBody;
363 >              oldFTB = frictionTorqueBody;
364 >              frictionTorqueBody = -(hydroProps_[index]->getXitr() * vcdBody + hydroProps_[index]->getXirr() * omegaBody);
365 >              frictionTorqueLab = Atrans * frictionTorqueBody;
366 >              
367 >              // re-estimate velocities at full-step using friction forces:
368 >              
369 >              velStep = vel + (dt2_ / mass * PhysicalConstants::energyConvert) * (frc + frictionForceLab);
370 >              angMomStep = angMom + (dt2_ * PhysicalConstants::energyConvert) * (Tb + frictionTorqueBody);
371  
372 <             //apply friction force and torque at center of diffusion
373 <             A = integrableObject->getA();
374 <             Atrans = A.transpose();
375 <             Vector3d rcd = Atrans * hydroProps_[index].cod;  
376 <             Vector3d vcd = vel + cross(omega, rcd);
377 <             vcd = A* vcd;
378 <             Vector3d frictionForce = -(hydroProps_[index].Xidtt * vcd + hydroProps_[index].Xidrt * omega);
379 <             frictionForce = Atrans*frictionForce;
380 <             integrableObject->addFrc(frictionForce);
381 <             Vector3d frictionTorque = - (hydroProps_[index].Xidtr * vcd + hydroProps_[index].Xidrr * omega);
382 <             frictionTorque = Atrans*frictionTorque;
383 <             integrableObject->addTrq(frictionTorque+ cross(rcd, frictionForce));
384 <            
219 <             //apply random force and torque at center of diffustion
220 <             Vector3d randomForce;
221 <             Vector3d randomTorque;
222 <             genRandomForceAndTorque(randomForce, randomTorque, index, variance_);
223 <             randomForce = Atrans*randomForce;
224 <             randomTorque = Atrans* randomTorque;
225 <             integrableObject->addFrc(randomForce);            
226 <             integrableObject->addTrq(randomTorque + cross(rcd, randomForce ));
227 <            
372 >              // check for convergence (if the vectors have converged, fdot and tdot will both be 1.0):
373 >              
374 >              fdot = dot(frictionForceLab, oldFFL) / frictionForceLab.lengthSquare();
375 >              tdot = dot(frictionTorqueBody, oldFTB) / frictionTorqueBody.lengthSquare();
376 >              
377 >              if (fabs(1.0 - fdot) <= forceTolerance_ && fabs(1.0 - tdot) <= forceTolerance_)
378 >                break; // iteration ends here
379 >            }
380 >
381 >            sd->addFrc(frictionForceLab);
382 >            sd->addTrq(frictionTorqueLab + cross(rcrLab, frictionForceLab));
383 >
384 >            
385            } else {
386 <             //spheric atom
230 <             Vector3d frictionForce = -(hydroProps_[index].Xidtt *vel);    
231 <             Vector3d randomForce;
232 <             Vector3d randomTorque;
233 <             genRandomForceAndTorque(randomForce, randomTorque, index, variance_);
386 >            //spherical atom
387  
388 <             //randomForce /= OOPSEConstant::energyConvert;
389 <             //randomTorque /= OOPSEConstant::energyConvert;
390 <             integrableObject->addFrc(frictionForce+randomForce);            
391 <          }
388 >            Vector3d randomForce;
389 >            Vector3d randomTorque;
390 >            genRandomForceAndTorque(randomForce, randomTorque, index, variance_);
391 >            sd->addFrc(randomForce);            
392  
393 +            // What remains contains velocity explicitly, but the velocity required
394 +            // is at the full step: v(t + h), while we have initially the velocity
395 +            // at the half step: v(t + h/2).  We need to iterate to converge the
396 +            // friction force vector.
397 +
398 +            // this is the velocity at the half-step:
399 +            
400 +            Vector3d vel =sd->getVel();
401 +
402 +            //estimate velocity at full-step using everything but friction forces:          
403 +
404 +            frc = sd->getFrc();
405 +            Vector3d velStep = vel + (dt2_ / mass * PhysicalConstants::energyConvert) * frc;
406 +
407 +            Vector3d frictionForce(0.0);
408 +            Vector3d oldFF;  // used to test for convergence
409 +            RealType fdot;
410 +
411 +            //iteration starts here:
412 +
413 +            for (int k = 0; k < maxIterNum_; k++) {
414 +
415 +              oldFF = frictionForce;                            
416 +              frictionForce = -hydroProps_[index]->getXitt() * velStep;
417 +
418 +              // re-estimate velocities at full-step using friction forces:
419 +              
420 +              velStep = vel + (dt2_ / mass * PhysicalConstants::energyConvert) * (frc + frictionForce);
421 +
422 +              // check for convergence (if the vector has converged, fdot will be 1.0):
423 +              
424 +              fdot = dot(frictionForce, oldFF) / frictionForce.lengthSquare();
425 +              
426 +              if (fabs(1.0 - fdot) <= forceTolerance_)
427 +                break; // iteration ends here
428 +            }
429 +
430 +            sd->addFrc(frictionForce);
431 +
432 +          }
433 +        }
434 +          
435          ++index;
436      
437        }
438      }    
439  
440 <    ForceManager::postCalculation();
440 >    info_->setFdf(fdf);
441 >    veloMunge->removeComDrift();
442 >    // Remove angular drift if we are not using periodic boundary conditions.
443 >    if(!simParams->getUsePeriodicBoundaryConditions())
444 >      veloMunge->removeAngularDrift();
445  
446 <
248 <
446 >    ForceManager::postCalculation();  
447    }
448  
449 < void LDForceManager::genRandomForceAndTorque(Vector3d& force, Vector3d& torque, unsigned int index, double variance) {
252 <    /*
253 <    SquareMatrix<double, 6> Dd;
254 <    SquareMatrix<double, 6> S;
255 <    Vector<double, 6> Z;
256 <    Vector<double, 6> generalForce;
257 <    Dd.setSubMatrix(0, 0, hydroProps_[index].Ddtt);
258 <    Dd.setSubMatrix(0, 3, hydroProps_[index].Ddtr.transpose());
259 <    Dd.setSubMatrix(3, 0, hydroProps_[index].Ddtr);
260 <    Dd.setSubMatrix(3, 3, hydroProps_[index].Ddrr);
261 <    CholeskyDecomposition(Dd, S);
262 <    */
449 > void LDForceManager::genRandomForceAndTorque(Vector3d& force, Vector3d& torque, unsigned int index, RealType variance) {
450  
264    SquareMatrix<double, 6> Xid;
265    SquareMatrix<double, 6> S;
266    Vector<double, 6> Z;
267    Vector<double, 6> generalForce;
268    Xid.setSubMatrix(0, 0, hydroProps_[index].Xidtt);
269    Xid.setSubMatrix(0, 3, hydroProps_[index].Xidrt);
270    Xid.setSubMatrix(3, 0, hydroProps_[index].Xidtr);
271    Xid.setSubMatrix(3, 3, hydroProps_[index].Xidrr);
272    CholeskyDecomposition(Xid, S);
451  
452 <    /*
453 <    Xid *= variance;
276 <    Z[0] = randNumGen_.randNorm(0, 1.0);
277 <    Z[1] = randNumGen_.randNorm(0, 1.0);
278 <    Z[2] = randNumGen_.randNorm(0, 1.0);
279 <    Z[3] = randNumGen_.randNorm(0, 1.0);
280 <    Z[4] = randNumGen_.randNorm(0, 1.0);
281 <    Z[5] = randNumGen_.randNorm(0, 1.0);
282 <    */
452 >    Vector<RealType, 6> Z;
453 >    Vector<RealType, 6> generalForce;
454          
455      Z[0] = randNumGen_.randNorm(0, variance);
456      Z[1] = randNumGen_.randNorm(0, variance);
# Line 288 | Line 459 | void LDForceManager::genRandomForceAndTorque(Vector3d&
459      Z[4] = randNumGen_.randNorm(0, variance);
460      Z[5] = randNumGen_.randNorm(0, variance);
461      
462 <
292 <    generalForce = S*Z;
462 >    generalForce = hydroProps_[index]->getS()*Z;
463      
464      force[0] = generalForce[0];
465      force[1] = generalForce[1];
# Line 298 | Line 468 | void LDForceManager::genRandomForceAndTorque(Vector3d&
468      torque[1] = generalForce[4];
469      torque[2] = generalForce[5];
470      
471 < }
471 > }
472  
473   }

Comparing trunk/src/integrators/LDForceManager.cpp (property svn:keywords):
Revision 904 by tim, Thu Mar 16 22:50:48 2006 UTC vs.
Revision 2071 by gezelter, Sat Mar 7 21:41:51 2015 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines