6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
+ |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
+ |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
#include <fstream> |
43 |
+ |
#include <iostream> |
44 |
|
#include "integrators/LDForceManager.hpp" |
45 |
|
#include "math/CholeskyDecomposition.hpp" |
46 |
< |
#include "utils/OOPSEConstant.hpp" |
47 |
< |
namespace oopse { |
46 |
> |
#include "utils/PhysicalConstants.hpp" |
47 |
> |
#include "hydrodynamics/Sphere.hpp" |
48 |
> |
#include "hydrodynamics/Ellipsoid.hpp" |
49 |
> |
#include "utils/ElementsTable.hpp" |
50 |
> |
#include "types/LennardJonesAdapter.hpp" |
51 |
> |
#include "types/GayBerneAdapter.hpp" |
52 |
|
|
53 |
< |
LDForceManager::LDForceManager(SimInfo* info) : ForceManager(info){ |
54 |
< |
Globals* simParams = info->getSimParams(); |
55 |
< |
std::map<std::string, HydroProp> hydroPropMap; |
56 |
< |
if (simParams->haveHydroPropFile()) { |
57 |
< |
hydroPropMap = parseFrictionFile(simParams->getHydroPropFile()); |
58 |
< |
} else { |
59 |
< |
//error |
53 |
> |
namespace OpenMD { |
54 |
> |
|
55 |
> |
LDForceManager::LDForceManager(SimInfo* info) : ForceManager(info), |
56 |
> |
maxIterNum_(4), |
57 |
> |
forceTolerance_(1e-6) { |
58 |
> |
simParams = info->getSimParams(); |
59 |
> |
veloMunge = new Velocitizer(info); |
60 |
> |
|
61 |
> |
sphericalBoundaryConditions_ = false; |
62 |
> |
if (simParams->getUseSphericalBoundaryConditions()) { |
63 |
> |
sphericalBoundaryConditions_ = true; |
64 |
> |
if (simParams->haveLangevinBufferRadius()) { |
65 |
> |
langevinBufferRadius_ = simParams->getLangevinBufferRadius(); |
66 |
> |
} else { |
67 |
> |
sprintf( painCave.errMsg, |
68 |
> |
"langevinBufferRadius must be specified " |
69 |
> |
"when useSphericalBoundaryConditions is turned on.\n"); |
70 |
> |
painCave.severity = OPENMD_ERROR; |
71 |
> |
painCave.isFatal = 1; |
72 |
> |
simError(); |
73 |
> |
} |
74 |
> |
|
75 |
> |
if (simParams->haveFrozenBufferRadius()) { |
76 |
> |
frozenBufferRadius_ = simParams->getFrozenBufferRadius(); |
77 |
> |
} else { |
78 |
> |
sprintf( painCave.errMsg, |
79 |
> |
"frozenBufferRadius must be specified " |
80 |
> |
"when useSphericalBoundaryConditions is turned on.\n"); |
81 |
> |
painCave.severity = OPENMD_ERROR; |
82 |
> |
painCave.isFatal = 1; |
83 |
> |
simError(); |
84 |
> |
} |
85 |
> |
|
86 |
> |
if (frozenBufferRadius_ < langevinBufferRadius_) { |
87 |
> |
sprintf( painCave.errMsg, |
88 |
> |
"frozenBufferRadius has been set smaller than the " |
89 |
> |
"langevinBufferRadius. This is probably an error.\n"); |
90 |
> |
painCave.severity = OPENMD_WARNING; |
91 |
> |
painCave.isFatal = 0; |
92 |
> |
simError(); |
93 |
> |
} |
94 |
|
} |
95 |
|
|
96 |
< |
SimInfo::MoleculeIterator i; |
97 |
< |
Molecule::IntegrableObjectIterator j; |
96 |
> |
// Build the hydroProp map: |
97 |
> |
std::map<std::string, HydroProp*> hydroPropMap; |
98 |
> |
|
99 |
|
Molecule* mol; |
100 |
< |
StuntDouble* integrableObject; |
101 |
< |
for (mol = info->beginMolecule(i); mol != NULL; mol = info->nextMolecule(i)) { |
102 |
< |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
103 |
< |
integrableObject = mol->nextIntegrableObject(j)) { |
104 |
< |
std::map<std::string, HydroProp>::iterator iter = hydroPropMap.find(integrableObject->getType()); |
105 |
< |
if (iter != hydroPropMap.end()) { |
106 |
< |
hydroProps_.push_back(iter->second); |
66 |
< |
} else { |
67 |
< |
//error |
68 |
< |
} |
69 |
< |
|
70 |
< |
} |
71 |
< |
} |
72 |
< |
variance_ = 2.0 * OOPSEConstant::kb*simParams->getTargetTemp()/simParams->getDt(); |
73 |
< |
} |
74 |
< |
std::map<std::string, HydroProp> LDForceManager::parseFrictionFile(const std::string& filename) { |
75 |
< |
std::map<std::string, HydroProp> props; |
76 |
< |
std::ifstream ifs(filename.c_str()); |
77 |
< |
if (ifs.is_open()) { |
100 |
> |
StuntDouble* sd; |
101 |
> |
SimInfo::MoleculeIterator i; |
102 |
> |
Molecule::IntegrableObjectIterator j; |
103 |
> |
bool needHydroPropFile = false; |
104 |
> |
|
105 |
> |
for (mol = info->beginMolecule(i); mol != NULL; |
106 |
> |
mol = info->nextMolecule(i)) { |
107 |
|
|
108 |
+ |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
109 |
+ |
sd = mol->nextIntegrableObject(j)) { |
110 |
+ |
|
111 |
+ |
if (sd->isRigidBody()) { |
112 |
+ |
RigidBody* rb = static_cast<RigidBody*>(sd); |
113 |
+ |
if (rb->getNumAtoms() > 1) needHydroPropFile = true; |
114 |
+ |
} |
115 |
+ |
|
116 |
+ |
} |
117 |
|
} |
118 |
+ |
|
119 |
|
|
120 |
< |
const unsigned int BufferSize = 65535; |
121 |
< |
char buffer[BufferSize]; |
122 |
< |
while (ifs.getline(buffer, BufferSize)) { |
123 |
< |
StringTokenizer tokenizer(buffer); |
124 |
< |
HydroProp currProp; |
125 |
< |
if (tokenizer.countTokens() >= 67) { |
126 |
< |
std::string atomName = tokenizer.nextToken(); |
127 |
< |
currProp.cod[0] = tokenizer.nextTokenAsDouble(); |
128 |
< |
currProp.cod[1] = tokenizer.nextTokenAsDouble(); |
129 |
< |
currProp.cod[2] = tokenizer.nextTokenAsDouble(); |
120 |
> |
if (needHydroPropFile) { |
121 |
> |
if (simParams->haveHydroPropFile()) { |
122 |
> |
hydroPropMap = parseFrictionFile(simParams->getHydroPropFile()); |
123 |
> |
} else { |
124 |
> |
sprintf( painCave.errMsg, |
125 |
> |
"HydroPropFile must be set to a file name if Langevin Dynamics\n" |
126 |
> |
"\tis specified for rigidBodies which contain more than one atom\n" |
127 |
> |
"\tTo create a HydroPropFile, run the \"Hydro\" program.\n"); |
128 |
> |
painCave.severity = OPENMD_ERROR; |
129 |
> |
painCave.isFatal = 1; |
130 |
> |
simError(); |
131 |
> |
} |
132 |
|
|
133 |
< |
currProp.Ddtt(0,0) = tokenizer.nextTokenAsDouble(); |
134 |
< |
currProp.Ddtt(0,1) = tokenizer.nextTokenAsDouble(); |
94 |
< |
currProp.Ddtt(0,2) = tokenizer.nextTokenAsDouble(); |
95 |
< |
currProp.Ddtt(1,0) = tokenizer.nextTokenAsDouble(); |
96 |
< |
currProp.Ddtt(1,1) = tokenizer.nextTokenAsDouble(); |
97 |
< |
currProp.Ddtt(1,2) = tokenizer.nextTokenAsDouble(); |
98 |
< |
currProp.Ddtt(2,0) = tokenizer.nextTokenAsDouble(); |
99 |
< |
currProp.Ddtt(2,1) = tokenizer.nextTokenAsDouble(); |
100 |
< |
currProp.Ddtt(2,2) = tokenizer.nextTokenAsDouble(); |
133 |
> |
for (mol = info->beginMolecule(i); mol != NULL; |
134 |
> |
mol = info->nextMolecule(i)) { |
135 |
|
|
136 |
< |
currProp.Ddtr(0,0) = tokenizer.nextTokenAsDouble(); |
137 |
< |
currProp.Ddtr(0,1) = tokenizer.nextTokenAsDouble(); |
104 |
< |
currProp.Ddtr(0,2) = tokenizer.nextTokenAsDouble(); |
105 |
< |
currProp.Ddtr(1,0) = tokenizer.nextTokenAsDouble(); |
106 |
< |
currProp.Ddtr(1,1) = tokenizer.nextTokenAsDouble(); |
107 |
< |
currProp.Ddtr(1,2) = tokenizer.nextTokenAsDouble(); |
108 |
< |
currProp.Ddtr(2,0) = tokenizer.nextTokenAsDouble(); |
109 |
< |
currProp.Ddtr(2,1) = tokenizer.nextTokenAsDouble(); |
110 |
< |
currProp.Ddtr(2,2) = tokenizer.nextTokenAsDouble(); |
136 |
> |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
137 |
> |
sd = mol->nextIntegrableObject(j)) { |
138 |
|
|
139 |
< |
currProp.Ddrr(0,0) = tokenizer.nextTokenAsDouble(); |
140 |
< |
currProp.Ddrr(0,1) = tokenizer.nextTokenAsDouble(); |
141 |
< |
currProp.Ddrr(0,2) = tokenizer.nextTokenAsDouble(); |
142 |
< |
currProp.Ddrr(1,0) = tokenizer.nextTokenAsDouble(); |
143 |
< |
currProp.Ddrr(1,1) = tokenizer.nextTokenAsDouble(); |
144 |
< |
currProp.Ddrr(1,2) = tokenizer.nextTokenAsDouble(); |
145 |
< |
currProp.Ddrr(2,0) = tokenizer.nextTokenAsDouble(); |
146 |
< |
currProp.Ddrr(2,1) = tokenizer.nextTokenAsDouble(); |
147 |
< |
currProp.Ddrr(2,2) = tokenizer.nextTokenAsDouble(); |
139 |
> |
std::map<std::string, HydroProp*>::iterator iter = hydroPropMap.find(sd->getType()); |
140 |
> |
if (iter != hydroPropMap.end()) { |
141 |
> |
hydroProps_.push_back(iter->second); |
142 |
> |
} else { |
143 |
> |
sprintf( painCave.errMsg, |
144 |
> |
"Can not find resistance tensor for atom [%s]\n", sd->getType().c_str()); |
145 |
> |
painCave.severity = OPENMD_ERROR; |
146 |
> |
painCave.isFatal = 1; |
147 |
> |
simError(); |
148 |
> |
} |
149 |
> |
} |
150 |
> |
} |
151 |
> |
} else { |
152 |
> |
|
153 |
> |
std::map<std::string, HydroProp*> hydroPropMap; |
154 |
> |
for (mol = info->beginMolecule(i); mol != NULL; |
155 |
> |
mol = info->nextMolecule(i)) { |
156 |
|
|
157 |
< |
currProp.Xidtt(0,0) = tokenizer.nextTokenAsDouble(); |
158 |
< |
currProp.Xidtt(0,1) = tokenizer.nextTokenAsDouble(); |
124 |
< |
currProp.Xidtt(0,2) = tokenizer.nextTokenAsDouble(); |
125 |
< |
currProp.Xidtt(1,0) = tokenizer.nextTokenAsDouble(); |
126 |
< |
currProp.Xidtt(1,1) = tokenizer.nextTokenAsDouble(); |
127 |
< |
currProp.Xidtt(1,2) = tokenizer.nextTokenAsDouble(); |
128 |
< |
currProp.Xidtt(2,0) = tokenizer.nextTokenAsDouble(); |
129 |
< |
currProp.Xidtt(2,1) = tokenizer.nextTokenAsDouble(); |
130 |
< |
currProp.Xidtt(2,2) = tokenizer.nextTokenAsDouble(); |
157 |
> |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
158 |
> |
sd = mol->nextIntegrableObject(j)) { |
159 |
|
|
160 |
< |
currProp.Xidrt(0,0) = tokenizer.nextTokenAsDouble(); |
133 |
< |
currProp.Xidrt(0,1) = tokenizer.nextTokenAsDouble(); |
134 |
< |
currProp.Xidrt(0,2) = tokenizer.nextTokenAsDouble(); |
135 |
< |
currProp.Xidrt(1,0) = tokenizer.nextTokenAsDouble(); |
136 |
< |
currProp.Xidrt(1,1) = tokenizer.nextTokenAsDouble(); |
137 |
< |
currProp.Xidrt(1,2) = tokenizer.nextTokenAsDouble(); |
138 |
< |
currProp.Xidrt(2,0) = tokenizer.nextTokenAsDouble(); |
139 |
< |
currProp.Xidrt(2,1) = tokenizer.nextTokenAsDouble(); |
140 |
< |
currProp.Xidrt(2,2) = tokenizer.nextTokenAsDouble(); |
141 |
< |
|
142 |
< |
currProp.Xidtr(0,0) = tokenizer.nextTokenAsDouble(); |
143 |
< |
currProp.Xidtr(0,1) = tokenizer.nextTokenAsDouble(); |
144 |
< |
currProp.Xidtr(0,2) = tokenizer.nextTokenAsDouble(); |
145 |
< |
currProp.Xidtr(1,0) = tokenizer.nextTokenAsDouble(); |
146 |
< |
currProp.Xidtr(1,1) = tokenizer.nextTokenAsDouble(); |
147 |
< |
currProp.Xidtr(1,2) = tokenizer.nextTokenAsDouble(); |
148 |
< |
currProp.Xidtr(2,0) = tokenizer.nextTokenAsDouble(); |
149 |
< |
currProp.Xidtr(2,1) = tokenizer.nextTokenAsDouble(); |
150 |
< |
currProp.Xidtr(2,2) = tokenizer.nextTokenAsDouble(); |
160 |
> |
Shape* currShape = NULL; |
161 |
|
|
162 |
< |
currProp.Xidrr(0,0) = tokenizer.nextTokenAsDouble(); |
163 |
< |
currProp.Xidrr(0,1) = tokenizer.nextTokenAsDouble(); |
164 |
< |
currProp.Xidrr(0,2) = tokenizer.nextTokenAsDouble(); |
165 |
< |
currProp.Xidrr(1,0) = tokenizer.nextTokenAsDouble(); |
166 |
< |
currProp.Xidrr(1,1) = tokenizer.nextTokenAsDouble(); |
167 |
< |
currProp.Xidrr(1,2) = tokenizer.nextTokenAsDouble(); |
168 |
< |
currProp.Xidrr(2,0) = tokenizer.nextTokenAsDouble(); |
169 |
< |
currProp.Xidrr(2,1) = tokenizer.nextTokenAsDouble(); |
170 |
< |
currProp.Xidrr(2,2) = tokenizer.nextTokenAsDouble(); |
171 |
< |
props.insert(std::map<std::string, HydroProp>::value_type(atomName, currProp)); |
162 |
> |
if (sd->isAtom()){ |
163 |
> |
Atom* atom = static_cast<Atom*>(sd); |
164 |
> |
AtomType* atomType = atom->getAtomType(); |
165 |
> |
GayBerneAdapter gba = GayBerneAdapter(atomType); |
166 |
> |
if (gba.isGayBerne()) { |
167 |
> |
currShape = new Ellipsoid(V3Zero, gba.getL() / 2.0, |
168 |
> |
gba.getD() / 2.0, |
169 |
> |
Mat3x3d::identity()); |
170 |
> |
} else { |
171 |
> |
LennardJonesAdapter lja = LennardJonesAdapter(atomType); |
172 |
> |
if (lja.isLennardJones()){ |
173 |
> |
currShape = new Sphere(atom->getPos(), lja.getSigma()/2.0); |
174 |
> |
} else { |
175 |
> |
int aNum = etab.GetAtomicNum((atom->getType()).c_str()); |
176 |
> |
if (aNum != 0) { |
177 |
> |
currShape = new Sphere(atom->getPos(), etab.GetVdwRad(aNum)); |
178 |
> |
} else { |
179 |
> |
sprintf( painCave.errMsg, |
180 |
> |
"Could not find atom type in default element.txt\n"); |
181 |
> |
painCave.severity = OPENMD_ERROR; |
182 |
> |
painCave.isFatal = 1; |
183 |
> |
simError(); |
184 |
> |
} |
185 |
> |
} |
186 |
> |
} |
187 |
> |
} |
188 |
> |
|
189 |
> |
if (!simParams->haveTargetTemp()) { |
190 |
> |
sprintf(painCave.errMsg, "You can't use LangevinDynamics without a targetTemp!\n"); |
191 |
> |
painCave.isFatal = 1; |
192 |
> |
painCave.severity = OPENMD_ERROR; |
193 |
> |
simError(); |
194 |
> |
} |
195 |
> |
|
196 |
> |
if (!simParams->haveViscosity()) { |
197 |
> |
sprintf(painCave.errMsg, "You can't use LangevinDynamics without a viscosity!\n"); |
198 |
> |
painCave.isFatal = 1; |
199 |
> |
painCave.severity = OPENMD_ERROR; |
200 |
> |
simError(); |
201 |
> |
} |
202 |
> |
|
203 |
> |
|
204 |
> |
HydroProp* currHydroProp = currShape->getHydroProp(simParams->getViscosity(),simParams->getTargetTemp()); |
205 |
> |
std::map<std::string, HydroProp*>::iterator iter = hydroPropMap.find(sd->getType()); |
206 |
> |
if (iter != hydroPropMap.end()) |
207 |
> |
hydroProps_.push_back(iter->second); |
208 |
> |
else { |
209 |
> |
currHydroProp->complete(); |
210 |
> |
hydroPropMap.insert(std::map<std::string, HydroProp*>::value_type(sd->getType(), currHydroProp)); |
211 |
> |
hydroProps_.push_back(currHydroProp); |
212 |
> |
} |
213 |
> |
delete currShape; |
214 |
|
} |
215 |
+ |
} |
216 |
|
} |
217 |
+ |
variance_ = 2.0 * PhysicalConstants::kb*simParams->getTargetTemp()/simParams->getDt(); |
218 |
+ |
} |
219 |
|
|
220 |
+ |
std::map<std::string, HydroProp*> LDForceManager::parseFrictionFile(const std::string& filename) { |
221 |
+ |
std::map<std::string, HydroProp*> props; |
222 |
+ |
std::ifstream ifs(filename.c_str()); |
223 |
+ |
if (ifs.is_open()) { |
224 |
+ |
|
225 |
+ |
} |
226 |
+ |
|
227 |
+ |
const unsigned int BufferSize = 65535; |
228 |
+ |
char buffer[BufferSize]; |
229 |
+ |
while (ifs.getline(buffer, BufferSize)) { |
230 |
+ |
HydroProp* currProp = new HydroProp(buffer); |
231 |
+ |
props.insert(std::map<std::string, HydroProp*>::value_type(currProp->getName(), currProp)); |
232 |
+ |
} |
233 |
+ |
|
234 |
|
return props; |
235 |
|
} |
236 |
< |
|
237 |
< |
void LDForceManager::postCalculation() { |
236 |
> |
|
237 |
> |
void LDForceManager::postCalculation(){ |
238 |
|
SimInfo::MoleculeIterator i; |
239 |
|
Molecule::IntegrableObjectIterator j; |
240 |
|
Molecule* mol; |
241 |
< |
StuntDouble* integrableObject; |
242 |
< |
Vector3d vel; |
241 |
> |
StuntDouble* sd; |
242 |
> |
RealType mass; |
243 |
|
Vector3d pos; |
244 |
|
Vector3d frc; |
245 |
|
Mat3x3d A; |
246 |
|
Mat3x3d Atrans; |
247 |
|
Vector3d Tb; |
248 |
|
Vector3d ji; |
180 |
– |
double mass; |
249 |
|
unsigned int index = 0; |
250 |
+ |
bool doLangevinForces; |
251 |
+ |
bool freezeMolecule; |
252 |
+ |
int fdf; |
253 |
+ |
|
254 |
+ |
fdf = 0; |
255 |
+ |
|
256 |
|
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
183 |
– |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
184 |
– |
integrableObject = mol->nextIntegrableObject(j)) { |
257 |
|
|
258 |
< |
vel =integrableObject->getVel(); |
259 |
< |
if (integrableObject->isDirectional()){ |
188 |
< |
//calculate angular velocity in lab frame |
189 |
< |
Mat3x3d I = integrableObject->getI(); |
190 |
< |
Vector3d angMom = integrableObject->getJ(); |
191 |
< |
Vector3d omega; |
258 |
> |
doLangevinForces = true; |
259 |
> |
freezeMolecule = false; |
260 |
|
|
261 |
< |
if (integrableObject->isLinear()) { |
262 |
< |
int linearAxis = integrableObject->linearAxis(); |
261 |
> |
if (sphericalBoundaryConditions_) { |
262 |
> |
|
263 |
> |
Vector3d molPos = mol->getCom(); |
264 |
> |
RealType molRad = molPos.length(); |
265 |
> |
|
266 |
> |
doLangevinForces = false; |
267 |
> |
|
268 |
> |
if (molRad > langevinBufferRadius_) { |
269 |
> |
doLangevinForces = true; |
270 |
> |
freezeMolecule = false; |
271 |
> |
} |
272 |
> |
if (molRad > frozenBufferRadius_) { |
273 |
> |
doLangevinForces = false; |
274 |
> |
freezeMolecule = true; |
275 |
> |
} |
276 |
> |
} |
277 |
> |
|
278 |
> |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
279 |
> |
sd = mol->nextIntegrableObject(j)) { |
280 |
> |
|
281 |
> |
if (freezeMolecule) |
282 |
> |
fdf += sd->freeze(); |
283 |
> |
|
284 |
> |
if (doLangevinForces) { |
285 |
> |
mass = sd->getMass(); |
286 |
> |
if (sd->isDirectional()){ |
287 |
> |
|
288 |
> |
// preliminaries for directional objects: |
289 |
> |
|
290 |
> |
A = sd->getA(); |
291 |
> |
Atrans = A.transpose(); |
292 |
> |
Vector3d rcrLab = Atrans * hydroProps_[index]->getCOR(); |
293 |
> |
|
294 |
> |
//apply random force and torque at center of resistance |
295 |
> |
|
296 |
> |
Vector3d randomForceBody; |
297 |
> |
Vector3d randomTorqueBody; |
298 |
> |
genRandomForceAndTorque(randomForceBody, randomTorqueBody, index, variance_); |
299 |
> |
Vector3d randomForceLab = Atrans * randomForceBody; |
300 |
> |
Vector3d randomTorqueLab = Atrans * randomTorqueBody; |
301 |
> |
sd->addFrc(randomForceLab); |
302 |
> |
sd->addTrq(randomTorqueLab + cross(rcrLab, randomForceLab )); |
303 |
> |
|
304 |
> |
Mat3x3d I = sd->getI(); |
305 |
> |
Vector3d omegaBody; |
306 |
> |
|
307 |
> |
// What remains contains velocity explicitly, but the velocity required |
308 |
> |
// is at the full step: v(t + h), while we have initially the velocity |
309 |
> |
// at the half step: v(t + h/2). We need to iterate to converge the |
310 |
> |
// friction force and friction torque vectors. |
311 |
> |
|
312 |
> |
// this is the velocity at the half-step: |
313 |
> |
|
314 |
> |
Vector3d vel =sd->getVel(); |
315 |
> |
Vector3d angMom = sd->getJ(); |
316 |
> |
|
317 |
> |
//estimate velocity at full-step using everything but friction forces: |
318 |
> |
|
319 |
> |
frc = sd->getFrc(); |
320 |
> |
Vector3d velStep = vel + (dt2_ /mass * PhysicalConstants::energyConvert) * frc; |
321 |
> |
|
322 |
> |
Tb = sd->lab2Body(sd->getTrq()); |
323 |
> |
Vector3d angMomStep = angMom + (dt2_ * PhysicalConstants::energyConvert) * Tb; |
324 |
> |
|
325 |
> |
Vector3d omegaLab; |
326 |
> |
Vector3d vcdLab; |
327 |
> |
Vector3d vcdBody; |
328 |
> |
Vector3d frictionForceBody; |
329 |
> |
Vector3d frictionForceLab(0.0); |
330 |
> |
Vector3d oldFFL; // used to test for convergence |
331 |
> |
Vector3d frictionTorqueBody(0.0); |
332 |
> |
Vector3d oldFTB; // used to test for convergence |
333 |
> |
Vector3d frictionTorqueLab; |
334 |
> |
RealType fdot; |
335 |
> |
RealType tdot; |
336 |
> |
|
337 |
> |
//iteration starts here: |
338 |
> |
|
339 |
> |
for (int k = 0; k < maxIterNum_; k++) { |
340 |
> |
|
341 |
> |
if (sd->isLinear()) { |
342 |
> |
int linearAxis = sd->linearAxis(); |
343 |
|
int l = (linearAxis +1 )%3; |
344 |
|
int m = (linearAxis +2 )%3; |
345 |
< |
omega[l] = angMom[l] /I(l, l); |
346 |
< |
omega[m] = angMom[m] /I(m, m); |
345 |
> |
omegaBody[l] = angMomStep[l] /I(l, l); |
346 |
> |
omegaBody[m] = angMomStep[m] /I(m, m); |
347 |
|
|
348 |
< |
} else { |
349 |
< |
omega[0] = angMom[0] /I(0, 0); |
350 |
< |
omega[1] = angMom[1] /I(1, 1); |
351 |
< |
omega[2] = angMom[2] /I(2, 2); |
352 |
< |
} |
348 |
> |
} else { |
349 |
> |
omegaBody[0] = angMomStep[0] /I(0, 0); |
350 |
> |
omegaBody[1] = angMomStep[1] /I(1, 1); |
351 |
> |
omegaBody[2] = angMomStep[2] /I(2, 2); |
352 |
> |
} |
353 |
> |
|
354 |
> |
omegaLab = Atrans * omegaBody; |
355 |
> |
|
356 |
> |
// apply friction force and torque at center of resistance |
357 |
> |
|
358 |
> |
vcdLab = velStep + cross(omegaLab, rcrLab); |
359 |
> |
vcdBody = A * vcdLab; |
360 |
> |
frictionForceBody = -(hydroProps_[index]->getXitt() * vcdBody + hydroProps_[index]->getXirt() * omegaBody); |
361 |
> |
oldFFL = frictionForceLab; |
362 |
> |
frictionForceLab = Atrans * frictionForceBody; |
363 |
> |
oldFTB = frictionTorqueBody; |
364 |
> |
frictionTorqueBody = -(hydroProps_[index]->getXitr() * vcdBody + hydroProps_[index]->getXirr() * omegaBody); |
365 |
> |
frictionTorqueLab = Atrans * frictionTorqueBody; |
366 |
> |
|
367 |
> |
// re-estimate velocities at full-step using friction forces: |
368 |
> |
|
369 |
> |
velStep = vel + (dt2_ / mass * PhysicalConstants::energyConvert) * (frc + frictionForceLab); |
370 |
> |
angMomStep = angMom + (dt2_ * PhysicalConstants::energyConvert) * (Tb + frictionTorqueBody); |
371 |
|
|
372 |
< |
//apply friction force and torque at center of diffusion |
373 |
< |
A = integrableObject->getA(); |
374 |
< |
Atrans = A.transpose(); |
375 |
< |
Vector3d rcd = Atrans * hydroProps_[index].cod; |
376 |
< |
Vector3d vcd = vel + cross(omega, rcd); |
377 |
< |
vcd = A* vcd; |
378 |
< |
Vector3d frictionForce = -(hydroProps_[index].Xidtt * vcd + hydroProps_[index].Xidrt * omega); |
379 |
< |
frictionForce = Atrans*frictionForce; |
380 |
< |
integrableObject->addFrc(frictionForce); |
381 |
< |
Vector3d frictionTorque = - (hydroProps_[index].Xidtr * vcd + hydroProps_[index].Xidrr * omega); |
382 |
< |
frictionTorque = Atrans*frictionTorque; |
383 |
< |
integrableObject->addTrq(frictionTorque+ cross(rcd, frictionForce)); |
384 |
< |
|
219 |
< |
//apply random force and torque at center of diffustion |
220 |
< |
Vector3d randomForce; |
221 |
< |
Vector3d randomTorque; |
222 |
< |
genRandomForceAndTorque(randomForce, randomTorque, index, variance_); |
223 |
< |
randomForce = Atrans*randomForce; |
224 |
< |
randomTorque = Atrans* randomTorque; |
225 |
< |
integrableObject->addFrc(randomForce); |
226 |
< |
integrableObject->addTrq(randomTorque + cross(rcd, randomForce )); |
227 |
< |
|
372 |
> |
// check for convergence (if the vectors have converged, fdot and tdot will both be 1.0): |
373 |
> |
|
374 |
> |
fdot = dot(frictionForceLab, oldFFL) / frictionForceLab.lengthSquare(); |
375 |
> |
tdot = dot(frictionTorqueBody, oldFTB) / frictionTorqueBody.lengthSquare(); |
376 |
> |
|
377 |
> |
if (fabs(1.0 - fdot) <= forceTolerance_ && fabs(1.0 - tdot) <= forceTolerance_) |
378 |
> |
break; // iteration ends here |
379 |
> |
} |
380 |
> |
|
381 |
> |
sd->addFrc(frictionForceLab); |
382 |
> |
sd->addTrq(frictionTorqueLab + cross(rcrLab, frictionForceLab)); |
383 |
> |
|
384 |
> |
|
385 |
|
} else { |
386 |
< |
//spheric atom |
230 |
< |
Vector3d frictionForce = -(hydroProps_[index].Xidtt *vel); |
231 |
< |
Vector3d randomForce; |
232 |
< |
Vector3d randomTorque; |
233 |
< |
genRandomForceAndTorque(randomForce, randomTorque, index, variance_); |
386 |
> |
//spherical atom |
387 |
|
|
388 |
< |
//randomForce /= OOPSEConstant::energyConvert; |
389 |
< |
//randomTorque /= OOPSEConstant::energyConvert; |
390 |
< |
integrableObject->addFrc(frictionForce+randomForce); |
391 |
< |
} |
388 |
> |
Vector3d randomForce; |
389 |
> |
Vector3d randomTorque; |
390 |
> |
genRandomForceAndTorque(randomForce, randomTorque, index, variance_); |
391 |
> |
sd->addFrc(randomForce); |
392 |
|
|
393 |
+ |
// What remains contains velocity explicitly, but the velocity required |
394 |
+ |
// is at the full step: v(t + h), while we have initially the velocity |
395 |
+ |
// at the half step: v(t + h/2). We need to iterate to converge the |
396 |
+ |
// friction force vector. |
397 |
+ |
|
398 |
+ |
// this is the velocity at the half-step: |
399 |
+ |
|
400 |
+ |
Vector3d vel =sd->getVel(); |
401 |
+ |
|
402 |
+ |
//estimate velocity at full-step using everything but friction forces: |
403 |
+ |
|
404 |
+ |
frc = sd->getFrc(); |
405 |
+ |
Vector3d velStep = vel + (dt2_ / mass * PhysicalConstants::energyConvert) * frc; |
406 |
+ |
|
407 |
+ |
Vector3d frictionForce(0.0); |
408 |
+ |
Vector3d oldFF; // used to test for convergence |
409 |
+ |
RealType fdot; |
410 |
+ |
|
411 |
+ |
//iteration starts here: |
412 |
+ |
|
413 |
+ |
for (int k = 0; k < maxIterNum_; k++) { |
414 |
+ |
|
415 |
+ |
oldFF = frictionForce; |
416 |
+ |
frictionForce = -hydroProps_[index]->getXitt() * velStep; |
417 |
+ |
|
418 |
+ |
// re-estimate velocities at full-step using friction forces: |
419 |
+ |
|
420 |
+ |
velStep = vel + (dt2_ / mass * PhysicalConstants::energyConvert) * (frc + frictionForce); |
421 |
+ |
|
422 |
+ |
// check for convergence (if the vector has converged, fdot will be 1.0): |
423 |
+ |
|
424 |
+ |
fdot = dot(frictionForce, oldFF) / frictionForce.lengthSquare(); |
425 |
+ |
|
426 |
+ |
if (fabs(1.0 - fdot) <= forceTolerance_) |
427 |
+ |
break; // iteration ends here |
428 |
+ |
} |
429 |
+ |
|
430 |
+ |
sd->addFrc(frictionForce); |
431 |
+ |
|
432 |
+ |
} |
433 |
+ |
} |
434 |
+ |
|
435 |
|
++index; |
436 |
|
|
437 |
|
} |
438 |
|
} |
439 |
|
|
440 |
< |
ForceManager::postCalculation(); |
440 |
> |
info_->setFdf(fdf); |
441 |
> |
veloMunge->removeComDrift(); |
442 |
> |
// Remove angular drift if we are not using periodic boundary conditions. |
443 |
> |
if(!simParams->getUsePeriodicBoundaryConditions()) |
444 |
> |
veloMunge->removeAngularDrift(); |
445 |
|
|
446 |
< |
|
248 |
< |
|
446 |
> |
ForceManager::postCalculation(); |
447 |
|
} |
448 |
|
|
449 |
< |
void LDForceManager::genRandomForceAndTorque(Vector3d& force, Vector3d& torque, unsigned int index, double variance) { |
252 |
< |
/* |
253 |
< |
SquareMatrix<double, 6> Dd; |
254 |
< |
SquareMatrix<double, 6> S; |
255 |
< |
Vector<double, 6> Z; |
256 |
< |
Vector<double, 6> generalForce; |
257 |
< |
Dd.setSubMatrix(0, 0, hydroProps_[index].Ddtt); |
258 |
< |
Dd.setSubMatrix(0, 3, hydroProps_[index].Ddtr.transpose()); |
259 |
< |
Dd.setSubMatrix(3, 0, hydroProps_[index].Ddtr); |
260 |
< |
Dd.setSubMatrix(3, 3, hydroProps_[index].Ddrr); |
261 |
< |
CholeskyDecomposition(Dd, S); |
262 |
< |
*/ |
449 |
> |
void LDForceManager::genRandomForceAndTorque(Vector3d& force, Vector3d& torque, unsigned int index, RealType variance) { |
450 |
|
|
264 |
– |
SquareMatrix<double, 6> Xid; |
265 |
– |
SquareMatrix<double, 6> S; |
266 |
– |
Vector<double, 6> Z; |
267 |
– |
Vector<double, 6> generalForce; |
268 |
– |
Xid.setSubMatrix(0, 0, hydroProps_[index].Xidtt); |
269 |
– |
Xid.setSubMatrix(0, 3, hydroProps_[index].Xidrt); |
270 |
– |
Xid.setSubMatrix(3, 0, hydroProps_[index].Xidtr); |
271 |
– |
Xid.setSubMatrix(3, 3, hydroProps_[index].Xidrr); |
272 |
– |
CholeskyDecomposition(Xid, S); |
451 |
|
|
452 |
< |
/* |
453 |
< |
Xid *= variance; |
276 |
< |
Z[0] = randNumGen_.randNorm(0, 1.0); |
277 |
< |
Z[1] = randNumGen_.randNorm(0, 1.0); |
278 |
< |
Z[2] = randNumGen_.randNorm(0, 1.0); |
279 |
< |
Z[3] = randNumGen_.randNorm(0, 1.0); |
280 |
< |
Z[4] = randNumGen_.randNorm(0, 1.0); |
281 |
< |
Z[5] = randNumGen_.randNorm(0, 1.0); |
282 |
< |
*/ |
452 |
> |
Vector<RealType, 6> Z; |
453 |
> |
Vector<RealType, 6> generalForce; |
454 |
|
|
455 |
|
Z[0] = randNumGen_.randNorm(0, variance); |
456 |
|
Z[1] = randNumGen_.randNorm(0, variance); |
459 |
|
Z[4] = randNumGen_.randNorm(0, variance); |
460 |
|
Z[5] = randNumGen_.randNorm(0, variance); |
461 |
|
|
462 |
< |
|
292 |
< |
generalForce = S*Z; |
462 |
> |
generalForce = hydroProps_[index]->getS()*Z; |
463 |
|
|
464 |
|
force[0] = generalForce[0]; |
465 |
|
force[1] = generalForce[1]; |
468 |
|
torque[1] = generalForce[4]; |
469 |
|
torque[2] = generalForce[5]; |
470 |
|
|
471 |
< |
} |
471 |
> |
} |
472 |
|
|
473 |
|
} |