| 1 | 
/* | 
| 2 | 
 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | 
 * | 
| 4 | 
 * The University of Notre Dame grants you ("Licensee") a | 
| 5 | 
 * non-exclusive, royalty free, license to use, modify and | 
| 6 | 
 * redistribute this software in source and binary code form, provided | 
| 7 | 
 * that the following conditions are met: | 
| 8 | 
 * | 
| 9 | 
 * 1. Redistributions of source code must retain the above copyright | 
| 10 | 
 *    notice, this list of conditions and the following disclaimer. | 
| 11 | 
 * | 
| 12 | 
 * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | 
 *    notice, this list of conditions and the following disclaimer in the | 
| 14 | 
 *    documentation and/or other materials provided with the | 
| 15 | 
 *    distribution. | 
| 16 | 
 * | 
| 17 | 
 * This software is provided "AS IS," without a warranty of any | 
| 18 | 
 * kind. All express or implied conditions, representations and | 
| 19 | 
 * warranties, including any implied warranty of merchantability, | 
| 20 | 
 * fitness for a particular purpose or non-infringement, are hereby | 
| 21 | 
 * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 | 
 * be liable for any damages suffered by licensee as a result of | 
| 23 | 
 * using, modifying or distributing the software or its | 
| 24 | 
 * derivatives. In no event will the University of Notre Dame or its | 
| 25 | 
 * licensors be liable for any lost revenue, profit or data, or for | 
| 26 | 
 * direct, indirect, special, consequential, incidental or punitive | 
| 27 | 
 * damages, however caused and regardless of the theory of liability, | 
| 28 | 
 * arising out of the use of or inability to use software, even if the | 
| 29 | 
 * University of Notre Dame has been advised of the possibility of | 
| 30 | 
 * such damages. | 
| 31 | 
 * | 
| 32 | 
 * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | 
 * research, please cite the appropriate papers when you publish your | 
| 34 | 
 * work.  Good starting points are: | 
| 35 | 
 *                                                                       | 
| 36 | 
 * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).              | 
| 37 | 
 * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).           | 
| 38 | 
 * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).           | 
| 39 | 
 * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | 
 * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | 
 */ | 
| 42 | 
  | 
| 43 | 
#include "brains/SimInfo.hpp" | 
| 44 | 
#include "brains/Thermo.hpp" | 
| 45 | 
#include "integrators/IntegratorCreator.hpp" | 
| 46 | 
#include "integrators/NPA.hpp" | 
| 47 | 
#include "primitives/Molecule.hpp" | 
| 48 | 
#include "utils/PhysicalConstants.hpp" | 
| 49 | 
#include "utils/simError.h" | 
| 50 | 
 | 
| 51 | 
namespace OpenMD { | 
| 52 | 
   | 
| 53 | 
  void NPA::moveA() { | 
| 54 | 
    SimInfo::MoleculeIterator i; | 
| 55 | 
    Molecule::IntegrableObjectIterator  j; | 
| 56 | 
    Molecule* mol; | 
| 57 | 
    StuntDouble* sd; | 
| 58 | 
    Vector3d Tb, ji; | 
| 59 | 
    RealType mass; | 
| 60 | 
    Vector3d vel; | 
| 61 | 
    Vector3d pos; | 
| 62 | 
    Vector3d frc; | 
| 63 | 
    Vector3d sc; | 
| 64 | 
    int index; | 
| 65 | 
 | 
| 66 | 
    loadEta(); | 
| 67 | 
     | 
| 68 | 
    instaTemp =thermo.getTemperature(); | 
| 69 | 
    press = thermo.getPressureTensor(); | 
| 70 | 
    instaPress = PhysicalConstants::pressureConvert* (press(0, 0) +  | 
| 71 | 
                                                      press(1, 1) +  | 
| 72 | 
                                                      press(2, 2)) / 3.0; | 
| 73 | 
    instaVol =thermo.getVolume(); | 
| 74 | 
 | 
| 75 | 
    Vector3d  COM = thermo.getCom(); | 
| 76 | 
 | 
| 77 | 
    //evolve velocity half step | 
| 78 | 
 | 
| 79 | 
    calcVelScale(); | 
| 80 | 
 | 
| 81 | 
    for (mol = info_->beginMolecule(i); mol != NULL;  | 
| 82 | 
         mol = info_->nextMolecule(i)) { | 
| 83 | 
 | 
| 84 | 
      for (sd = mol->beginIntegrableObject(j); sd != NULL; | 
| 85 | 
           sd = mol->nextIntegrableObject(j)) { | 
| 86 | 
         | 
| 87 | 
        vel = sd->getVel(); | 
| 88 | 
        frc = sd->getFrc(); | 
| 89 | 
 | 
| 90 | 
        mass = sd->getMass(); | 
| 91 | 
         | 
| 92 | 
        getVelScaleA(sc, vel); | 
| 93 | 
         | 
| 94 | 
        // velocity half step  (use chi from previous step here): | 
| 95 | 
         | 
| 96 | 
        vel += dt2*PhysicalConstants::energyConvert/mass* frc - dt2*sc; | 
| 97 | 
        sd->setVel(vel); | 
| 98 | 
         | 
| 99 | 
        if (sd->isDirectional()) { | 
| 100 | 
           | 
| 101 | 
          // get and convert the torque to body frame | 
| 102 | 
 | 
| 103 | 
          Tb = sd->lab2Body(sd->getTrq()); | 
| 104 | 
           | 
| 105 | 
          // get the angular momentum, and propagate a half step | 
| 106 | 
           | 
| 107 | 
          ji = sd->getJ(); | 
| 108 | 
           | 
| 109 | 
          ji += dt2*PhysicalConstants::energyConvert * Tb  | 
| 110 | 
            - dt2*thermostat.first* ji; | 
| 111 | 
           | 
| 112 | 
          rotAlgo_->rotate(sd, ji, dt); | 
| 113 | 
           | 
| 114 | 
          sd->setJ(ji); | 
| 115 | 
        }             | 
| 116 | 
      } | 
| 117 | 
    } | 
| 118 | 
    // evolve eta a half step | 
| 119 | 
     | 
| 120 | 
    evolveEtaA();     | 
| 121 | 
    flucQ_->moveA(); | 
| 122 | 
 | 
| 123 | 
    index = 0; | 
| 124 | 
    for (mol = info_->beginMolecule(i); mol != NULL;  | 
| 125 | 
         mol = info_->nextMolecule(i)) { | 
| 126 | 
       | 
| 127 | 
      for (sd = mol->beginIntegrableObject(j); sd != NULL; | 
| 128 | 
           sd = mol->nextIntegrableObject(j)) { | 
| 129 | 
 | 
| 130 | 
        oldPos[index++] = sd->getPos();             | 
| 131 | 
 | 
| 132 | 
      } | 
| 133 | 
    } | 
| 134 | 
     | 
| 135 | 
    //the first estimation of r(t+dt) is equal to  r(t) | 
| 136 | 
     | 
| 137 | 
    for(int k = 0; k < maxIterNum_; k++) { | 
| 138 | 
      index = 0; | 
| 139 | 
      for (mol = info_->beginMolecule(i); mol != NULL;  | 
| 140 | 
           mol = info_->nextMolecule(i)) { | 
| 141 | 
         | 
| 142 | 
        for (sd = mol->beginIntegrableObject(j); sd != NULL; | 
| 143 | 
             sd = mol->nextIntegrableObject(j)) { | 
| 144 | 
           | 
| 145 | 
          vel = sd->getVel(); | 
| 146 | 
          pos = sd->getPos(); | 
| 147 | 
           | 
| 148 | 
          this->getPosScale(pos, COM, index, sc); | 
| 149 | 
           | 
| 150 | 
          pos = oldPos[index] + dt * (vel + sc); | 
| 151 | 
          sd->setPos(pos);      | 
| 152 | 
 | 
| 153 | 
          ++index; | 
| 154 | 
        } | 
| 155 | 
      } | 
| 156 | 
 | 
| 157 | 
      rattle_->constraintA(); | 
| 158 | 
    } | 
| 159 | 
 | 
| 160 | 
    // Scale the box after all the positions have been moved: | 
| 161 | 
     | 
| 162 | 
    this->scaleSimBox(); | 
| 163 | 
     | 
| 164 | 
    saveEta(); | 
| 165 | 
  } | 
| 166 | 
 | 
| 167 | 
  void NPA::moveB(void) { | 
| 168 | 
    SimInfo::MoleculeIterator i; | 
| 169 | 
    Molecule::IntegrableObjectIterator  j; | 
| 170 | 
    Molecule* mol; | 
| 171 | 
    StuntDouble* sd; | 
| 172 | 
    int index; | 
| 173 | 
    Vector3d Tb; | 
| 174 | 
    Vector3d ji; | 
| 175 | 
    Vector3d sc; | 
| 176 | 
    Vector3d vel; | 
| 177 | 
    Vector3d frc; | 
| 178 | 
    RealType mass; | 
| 179 | 
 | 
| 180 | 
    loadEta(); | 
| 181 | 
     | 
| 182 | 
    //save velocity and angular momentum | 
| 183 | 
    index = 0; | 
| 184 | 
    for (mol = info_->beginMolecule(i); mol != NULL;  | 
| 185 | 
         mol = info_->nextMolecule(i)) { | 
| 186 | 
       | 
| 187 | 
      for (sd = mol->beginIntegrableObject(j); sd != NULL; | 
| 188 | 
           sd = mol->nextIntegrableObject(j)) { | 
| 189 | 
         | 
| 190 | 
        oldVel[index] = sd->getVel(); | 
| 191 | 
 | 
| 192 | 
        if (sd->isDirectional()) | 
| 193 | 
          oldJi[index] = sd->getJ(); | 
| 194 | 
         | 
| 195 | 
        ++index; | 
| 196 | 
      } | 
| 197 | 
    } | 
| 198 | 
     | 
| 199 | 
    instaVol = thermo.getVolume(); | 
| 200 | 
    instaTemp = thermo.getTemperature(); | 
| 201 | 
    instaPress = thermo.getPressure(); | 
| 202 | 
     | 
| 203 | 
    //evolve eta | 
| 204 | 
    this->evolveEtaB(); | 
| 205 | 
    this->calcVelScale(); | 
| 206 | 
 | 
| 207 | 
    index = 0; | 
| 208 | 
    for (mol = info_->beginMolecule(i); mol != NULL;  | 
| 209 | 
         mol = info_->nextMolecule(i)) { | 
| 210 | 
       | 
| 211 | 
      for (sd = mol->beginIntegrableObject(j); sd != NULL; | 
| 212 | 
           sd = mol->nextIntegrableObject(j)) {             | 
| 213 | 
         | 
| 214 | 
        frc = sd->getFrc(); | 
| 215 | 
        mass = sd->getMass(); | 
| 216 | 
 | 
| 217 | 
        getVelScaleB(sc, index); | 
| 218 | 
         | 
| 219 | 
        // velocity half step | 
| 220 | 
        vel = oldVel[index]  | 
| 221 | 
          + dt2*PhysicalConstants::energyConvert/mass* frc  | 
| 222 | 
          - dt2*sc; | 
| 223 | 
         | 
| 224 | 
        sd->setVel(vel); | 
| 225 | 
         | 
| 226 | 
        if (sd->isDirectional()) { | 
| 227 | 
          // get and convert the torque to body frame | 
| 228 | 
          Tb = sd->lab2Body(sd->getTrq()); | 
| 229 | 
           | 
| 230 | 
          ji = oldJi[index]  | 
| 231 | 
            + dt2*PhysicalConstants::energyConvert*Tb  | 
| 232 | 
            - dt2*thermostat.first*oldJi[index]; | 
| 233 | 
           | 
| 234 | 
          sd->setJ(ji); | 
| 235 | 
        } | 
| 236 | 
 | 
| 237 | 
        ++index; | 
| 238 | 
      } | 
| 239 | 
    } | 
| 240 | 
         | 
| 241 | 
    rattle_->constraintB(); | 
| 242 | 
 | 
| 243 | 
    flucQ_->moveB(); | 
| 244 | 
    saveEta(); | 
| 245 | 
  } | 
| 246 | 
 | 
| 247 | 
  void NPA::evolveEtaA() { | 
| 248 | 
 | 
| 249 | 
    eta(2,2) += dt2 *  instaVol * (press(2, 2) - targetPressure/PhysicalConstants::pressureConvert) / (NkBT*tb2); | 
| 250 | 
    oldEta = eta;   | 
| 251 | 
  } | 
| 252 | 
 | 
| 253 | 
  void NPA::evolveEtaB() { | 
| 254 | 
 | 
| 255 | 
    prevEta = eta; | 
| 256 | 
    eta(2,2) = oldEta(2, 2) + dt2 *  instaVol * | 
| 257 | 
            (press(2, 2) - targetPressure/PhysicalConstants::pressureConvert) / (NkBT*tb2); | 
| 258 | 
  } | 
| 259 | 
 | 
| 260 | 
  void NPA::calcVelScale(){ | 
| 261 | 
 | 
| 262 | 
    for (int i = 0; i < 3; i++ ) { | 
| 263 | 
      for (int j = 0; j < 3; j++ ) { | 
| 264 | 
        vScale(i, j) = eta(i, j); | 
| 265 | 
      } | 
| 266 | 
    } | 
| 267 | 
  } | 
| 268 | 
 | 
| 269 | 
  void NPA::getVelScaleA(Vector3d& sc, const Vector3d& vel){ | 
| 270 | 
    sc = vScale * vel; | 
| 271 | 
  } | 
| 272 | 
 | 
| 273 | 
  void NPA::getVelScaleB(Vector3d& sc, int index ) { | 
| 274 | 
    sc = vScale * oldVel[index]; | 
| 275 | 
  } | 
| 276 | 
 | 
| 277 | 
  void NPA::getPosScale(const Vector3d& pos, const Vector3d& COM, int index,  | 
| 278 | 
                        Vector3d& sc) { | 
| 279 | 
 | 
| 280 | 
    Vector3d rj = (oldPos[index] + pos)/(RealType)2.0 -COM; | 
| 281 | 
    sc = eta * rj; | 
| 282 | 
  } | 
| 283 | 
 | 
| 284 | 
  void NPA::scaleSimBox(){ | 
| 285 | 
    Mat3x3d scaleMat; | 
| 286 | 
     | 
| 287 | 
    for(int i=0; i<3; i++){ | 
| 288 | 
      for(int j=0; j<3; j++){ | 
| 289 | 
        scaleMat(i, j) = 0.0; | 
| 290 | 
        if(i==j) { | 
| 291 | 
          scaleMat(i, j) = 1.0; | 
| 292 | 
        } | 
| 293 | 
      } | 
| 294 | 
    } | 
| 295 | 
     | 
| 296 | 
    scaleMat(2, 2) = exp(dt*eta(2, 2)); | 
| 297 | 
    Mat3x3d hmat = snap->getHmat(); | 
| 298 | 
    hmat = hmat *scaleMat; | 
| 299 | 
    snap->setHmat(hmat); | 
| 300 | 
  } | 
| 301 | 
 | 
| 302 | 
  bool NPA::etaConverged() { | 
| 303 | 
    int i; | 
| 304 | 
    RealType diffEta, sumEta; | 
| 305 | 
 | 
| 306 | 
    sumEta = 0; | 
| 307 | 
    for(i = 0; i < 3; i++) { | 
| 308 | 
      sumEta += pow(prevEta(i, i) - eta(i, i), 2); | 
| 309 | 
    } | 
| 310 | 
     | 
| 311 | 
    diffEta = sqrt( sumEta / 3.0 ); | 
| 312 | 
 | 
| 313 | 
    return ( diffEta <= etaTolerance ); | 
| 314 | 
  } | 
| 315 | 
 | 
| 316 | 
  RealType NPA::calcConservedQuantity(){ | 
| 317 | 
 | 
| 318 | 
    thermostat = snap->getThermostat(); | 
| 319 | 
    loadEta(); | 
| 320 | 
     | 
| 321 | 
    // We need NkBT a lot, so just set it here: This is the RAW number | 
| 322 | 
    // of integrableObjects, so no subtraction or addition of constraints or | 
| 323 | 
    // orientational degrees of freedom: | 
| 324 | 
    NkBT = info_->getNGlobalIntegrableObjects()*PhysicalConstants::kB *targetTemp; | 
| 325 | 
 | 
| 326 | 
    // fkBT is used because the thermostat operates on more degrees of freedom | 
| 327 | 
    // than the barostat (when there are particles with orientational degrees | 
| 328 | 
    // of freedom).   | 
| 329 | 
    fkBT = info_->getNdf()*PhysicalConstants::kB *targetTemp;     | 
| 330 | 
     | 
| 331 | 
    RealType conservedQuantity; | 
| 332 | 
    RealType totalEnergy; | 
| 333 | 
    RealType thermostat_kinetic; | 
| 334 | 
    RealType thermostat_potential; | 
| 335 | 
    RealType barostat_kinetic; | 
| 336 | 
    RealType barostat_potential; | 
| 337 | 
    RealType trEta; | 
| 338 | 
 | 
| 339 | 
    totalEnergy = thermo.getTotalEnergy(); | 
| 340 | 
 | 
| 341 | 
    thermostat_kinetic = 0.0; | 
| 342 | 
    thermostat_potential = 0.0; | 
| 343 | 
 | 
| 344 | 
    SquareMatrix<RealType, 3> tmp = eta.transpose() * eta; | 
| 345 | 
    trEta = tmp.trace(); | 
| 346 | 
     | 
| 347 | 
    barostat_kinetic = NkBT * tb2 * trEta /(2.0 * PhysicalConstants::energyConvert); | 
| 348 | 
 | 
| 349 | 
    barostat_potential = (targetPressure * thermo.getVolume() / PhysicalConstants::pressureConvert) /PhysicalConstants::energyConvert; | 
| 350 | 
 | 
| 351 | 
    conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + | 
| 352 | 
      barostat_kinetic + barostat_potential; | 
| 353 | 
 | 
| 354 | 
    return conservedQuantity; | 
| 355 | 
 | 
| 356 | 
  } | 
| 357 | 
 | 
| 358 | 
  void NPA::loadEta() { | 
| 359 | 
    eta= snap->getBarostat(); | 
| 360 | 
 | 
| 361 | 
    //if (!eta.isDiagonal()) { | 
| 362 | 
    //    sprintf( painCave.errMsg, | 
| 363 | 
    //             "NPA error: the diagonal elements of eta matrix are not the same or etaMat is not a diagonal matrix"); | 
| 364 | 
    //    painCave.isFatal = 1; | 
| 365 | 
    //    simError(); | 
| 366 | 
    //} | 
| 367 | 
  } | 
| 368 | 
 | 
| 369 | 
  void NPA::saveEta() { | 
| 370 | 
    snap->setBarostat(eta); | 
| 371 | 
  } | 
| 372 | 
 | 
| 373 | 
} | 
| 374 | 
 |