| 1 | /* | 
| 2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Redistributions of source code must retain the above copyright | 
| 10 | *    notice, this list of conditions and the following disclaimer. | 
| 11 | * | 
| 12 | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | *    notice, this list of conditions and the following disclaimer in the | 
| 14 | *    documentation and/or other materials provided with the | 
| 15 | *    distribution. | 
| 16 | * | 
| 17 | * This software is provided "AS IS," without a warranty of any | 
| 18 | * kind. All express or implied conditions, representations and | 
| 19 | * warranties, including any implied warranty of merchantability, | 
| 20 | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 | * be liable for any damages suffered by licensee as a result of | 
| 23 | * using, modifying or distributing the software or its | 
| 24 | * derivatives. In no event will the University of Notre Dame or its | 
| 25 | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 | * direct, indirect, special, consequential, incidental or punitive | 
| 27 | * damages, however caused and regardless of the theory of liability, | 
| 28 | * arising out of the use of or inability to use software, even if the | 
| 29 | * University of Notre Dame has been advised of the possibility of | 
| 30 | * such damages. | 
| 31 | * | 
| 32 | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | * research, please cite the appropriate papers when you publish your | 
| 34 | * work.  Good starting points are: | 
| 35 | * | 
| 36 | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). | 
| 39 | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | */ | 
| 42 |  | 
| 43 | #include "brains/SimInfo.hpp" | 
| 44 | #include "brains/Thermo.hpp" | 
| 45 | #include "integrators/IntegratorCreator.hpp" | 
| 46 | #include "integrators/NPA.hpp" | 
| 47 | #include "primitives/Molecule.hpp" | 
| 48 | #include "utils/PhysicalConstants.hpp" | 
| 49 | #include "utils/simError.h" | 
| 50 |  | 
| 51 | namespace OpenMD { | 
| 52 |  | 
| 53 | void NPA::moveA() { | 
| 54 | SimInfo::MoleculeIterator i; | 
| 55 | Molecule::IntegrableObjectIterator  j; | 
| 56 | Molecule* mol; | 
| 57 | StuntDouble* sd; | 
| 58 | Vector3d Tb, ji; | 
| 59 | RealType mass; | 
| 60 | Vector3d vel; | 
| 61 | Vector3d pos; | 
| 62 | Vector3d frc; | 
| 63 | Vector3d sc; | 
| 64 | int index; | 
| 65 |  | 
| 66 | loadEta(); | 
| 67 |  | 
| 68 | instaTemp =thermo.getTemperature(); | 
| 69 | press = thermo.getPressureTensor(); | 
| 70 | instaPress = PhysicalConstants::pressureConvert* (press(0, 0) + | 
| 71 | press(1, 1) + | 
| 72 | press(2, 2)) / 3.0; | 
| 73 | instaVol =thermo.getVolume(); | 
| 74 |  | 
| 75 | Vector3d  COM = thermo.getCom(); | 
| 76 |  | 
| 77 | //evolve velocity half step | 
| 78 |  | 
| 79 | calcVelScale(); | 
| 80 |  | 
| 81 | for (mol = info_->beginMolecule(i); mol != NULL; | 
| 82 | mol = info_->nextMolecule(i)) { | 
| 83 |  | 
| 84 | for (sd = mol->beginIntegrableObject(j); sd != NULL; | 
| 85 | sd = mol->nextIntegrableObject(j)) { | 
| 86 |  | 
| 87 | vel = sd->getVel(); | 
| 88 | frc = sd->getFrc(); | 
| 89 |  | 
| 90 | mass = sd->getMass(); | 
| 91 |  | 
| 92 | getVelScaleA(sc, vel); | 
| 93 |  | 
| 94 | // velocity half step  (use chi from previous step here): | 
| 95 |  | 
| 96 | vel += dt2*PhysicalConstants::energyConvert/mass* frc - dt2*sc; | 
| 97 | sd->setVel(vel); | 
| 98 |  | 
| 99 | if (sd->isDirectional()) { | 
| 100 |  | 
| 101 | // get and convert the torque to body frame | 
| 102 |  | 
| 103 | Tb = sd->lab2Body(sd->getTrq()); | 
| 104 |  | 
| 105 | // get the angular momentum, and propagate a half step | 
| 106 |  | 
| 107 | ji = sd->getJ(); | 
| 108 |  | 
| 109 | ji += dt2*PhysicalConstants::energyConvert * Tb | 
| 110 | - dt2*thermostat.first* ji; | 
| 111 |  | 
| 112 | rotAlgo_->rotate(sd, ji, dt); | 
| 113 |  | 
| 114 | sd->setJ(ji); | 
| 115 | } | 
| 116 | } | 
| 117 | } | 
| 118 | // evolve eta a half step | 
| 119 |  | 
| 120 | evolveEtaA(); | 
| 121 | flucQ_->moveA(); | 
| 122 |  | 
| 123 | index = 0; | 
| 124 | for (mol = info_->beginMolecule(i); mol != NULL; | 
| 125 | mol = info_->nextMolecule(i)) { | 
| 126 |  | 
| 127 | for (sd = mol->beginIntegrableObject(j); sd != NULL; | 
| 128 | sd = mol->nextIntegrableObject(j)) { | 
| 129 |  | 
| 130 | oldPos[index++] = sd->getPos(); | 
| 131 |  | 
| 132 | } | 
| 133 | } | 
| 134 |  | 
| 135 | //the first estimation of r(t+dt) is equal to  r(t) | 
| 136 |  | 
| 137 | for(int k = 0; k < maxIterNum_; k++) { | 
| 138 | index = 0; | 
| 139 | for (mol = info_->beginMolecule(i); mol != NULL; | 
| 140 | mol = info_->nextMolecule(i)) { | 
| 141 |  | 
| 142 | for (sd = mol->beginIntegrableObject(j); sd != NULL; | 
| 143 | sd = mol->nextIntegrableObject(j)) { | 
| 144 |  | 
| 145 | vel = sd->getVel(); | 
| 146 | pos = sd->getPos(); | 
| 147 |  | 
| 148 | this->getPosScale(pos, COM, index, sc); | 
| 149 |  | 
| 150 | pos = oldPos[index] + dt * (vel + sc); | 
| 151 | sd->setPos(pos); | 
| 152 |  | 
| 153 | ++index; | 
| 154 | } | 
| 155 | } | 
| 156 |  | 
| 157 | rattle_->constraintA(); | 
| 158 | } | 
| 159 |  | 
| 160 | // Scale the box after all the positions have been moved: | 
| 161 |  | 
| 162 | this->scaleSimBox(); | 
| 163 |  | 
| 164 | saveEta(); | 
| 165 | } | 
| 166 |  | 
| 167 | void NPA::moveB(void) { | 
| 168 | SimInfo::MoleculeIterator i; | 
| 169 | Molecule::IntegrableObjectIterator  j; | 
| 170 | Molecule* mol; | 
| 171 | StuntDouble* sd; | 
| 172 | int index; | 
| 173 | Vector3d Tb; | 
| 174 | Vector3d ji; | 
| 175 | Vector3d sc; | 
| 176 | Vector3d vel; | 
| 177 | Vector3d frc; | 
| 178 | RealType mass; | 
| 179 |  | 
| 180 | loadEta(); | 
| 181 |  | 
| 182 | //save velocity and angular momentum | 
| 183 | index = 0; | 
| 184 | for (mol = info_->beginMolecule(i); mol != NULL; | 
| 185 | mol = info_->nextMolecule(i)) { | 
| 186 |  | 
| 187 | for (sd = mol->beginIntegrableObject(j); sd != NULL; | 
| 188 | sd = mol->nextIntegrableObject(j)) { | 
| 189 |  | 
| 190 | oldVel[index] = sd->getVel(); | 
| 191 |  | 
| 192 | if (sd->isDirectional()) | 
| 193 | oldJi[index] = sd->getJ(); | 
| 194 |  | 
| 195 | ++index; | 
| 196 | } | 
| 197 | } | 
| 198 |  | 
| 199 | instaVol = thermo.getVolume(); | 
| 200 | instaTemp = thermo.getTemperature(); | 
| 201 | instaPress = thermo.getPressure(); | 
| 202 |  | 
| 203 | //evolve eta | 
| 204 | this->evolveEtaB(); | 
| 205 | this->calcVelScale(); | 
| 206 |  | 
| 207 | index = 0; | 
| 208 | for (mol = info_->beginMolecule(i); mol != NULL; | 
| 209 | mol = info_->nextMolecule(i)) { | 
| 210 |  | 
| 211 | for (sd = mol->beginIntegrableObject(j); sd != NULL; | 
| 212 | sd = mol->nextIntegrableObject(j)) { | 
| 213 |  | 
| 214 | frc = sd->getFrc(); | 
| 215 | mass = sd->getMass(); | 
| 216 |  | 
| 217 | getVelScaleB(sc, index); | 
| 218 |  | 
| 219 | // velocity half step | 
| 220 | vel = oldVel[index] | 
| 221 | + dt2*PhysicalConstants::energyConvert/mass* frc | 
| 222 | - dt2*sc; | 
| 223 |  | 
| 224 | sd->setVel(vel); | 
| 225 |  | 
| 226 | if (sd->isDirectional()) { | 
| 227 | // get and convert the torque to body frame | 
| 228 | Tb = sd->lab2Body(sd->getTrq()); | 
| 229 |  | 
| 230 | ji = oldJi[index] | 
| 231 | + dt2*PhysicalConstants::energyConvert*Tb | 
| 232 | - dt2*thermostat.first*oldJi[index]; | 
| 233 |  | 
| 234 | sd->setJ(ji); | 
| 235 | } | 
| 236 |  | 
| 237 | ++index; | 
| 238 | } | 
| 239 | } | 
| 240 |  | 
| 241 | rattle_->constraintB(); | 
| 242 |  | 
| 243 | flucQ_->moveB(); | 
| 244 | saveEta(); | 
| 245 | } | 
| 246 |  | 
| 247 | void NPA::evolveEtaA() { | 
| 248 |  | 
| 249 | eta(2,2) += dt2 *  instaVol * (press(2, 2) - targetPressure/PhysicalConstants::pressureConvert) / (NkBT*tb2); | 
| 250 | oldEta = eta; | 
| 251 | } | 
| 252 |  | 
| 253 | void NPA::evolveEtaB() { | 
| 254 |  | 
| 255 | prevEta = eta; | 
| 256 | eta(2,2) = oldEta(2, 2) + dt2 *  instaVol * | 
| 257 | (press(2, 2) - targetPressure/PhysicalConstants::pressureConvert) / (NkBT*tb2); | 
| 258 | } | 
| 259 |  | 
| 260 | void NPA::calcVelScale(){ | 
| 261 |  | 
| 262 | for (int i = 0; i < 3; i++ ) { | 
| 263 | for (int j = 0; j < 3; j++ ) { | 
| 264 | vScale(i, j) = eta(i, j); | 
| 265 | } | 
| 266 | } | 
| 267 | } | 
| 268 |  | 
| 269 | void NPA::getVelScaleA(Vector3d& sc, const Vector3d& vel){ | 
| 270 | sc = vScale * vel; | 
| 271 | } | 
| 272 |  | 
| 273 | void NPA::getVelScaleB(Vector3d& sc, int index ) { | 
| 274 | sc = vScale * oldVel[index]; | 
| 275 | } | 
| 276 |  | 
| 277 | void NPA::getPosScale(const Vector3d& pos, const Vector3d& COM, int index, | 
| 278 | Vector3d& sc) { | 
| 279 |  | 
| 280 | Vector3d rj = (oldPos[index] + pos)/(RealType)2.0 -COM; | 
| 281 | sc = eta * rj; | 
| 282 | } | 
| 283 |  | 
| 284 | void NPA::scaleSimBox(){ | 
| 285 | Mat3x3d scaleMat; | 
| 286 |  | 
| 287 | for(int i=0; i<3; i++){ | 
| 288 | for(int j=0; j<3; j++){ | 
| 289 | scaleMat(i, j) = 0.0; | 
| 290 | if(i==j) { | 
| 291 | scaleMat(i, j) = 1.0; | 
| 292 | } | 
| 293 | } | 
| 294 | } | 
| 295 |  | 
| 296 | scaleMat(2, 2) = exp(dt*eta(2, 2)); | 
| 297 | Mat3x3d hmat = snap->getHmat(); | 
| 298 | hmat = hmat *scaleMat; | 
| 299 | snap->setHmat(hmat); | 
| 300 | } | 
| 301 |  | 
| 302 | bool NPA::etaConverged() { | 
| 303 | int i; | 
| 304 | RealType diffEta, sumEta; | 
| 305 |  | 
| 306 | sumEta = 0; | 
| 307 | for(i = 0; i < 3; i++) { | 
| 308 | sumEta += pow(prevEta(i, i) - eta(i, i), 2); | 
| 309 | } | 
| 310 |  | 
| 311 | diffEta = sqrt( sumEta / 3.0 ); | 
| 312 |  | 
| 313 | return ( diffEta <= etaTolerance ); | 
| 314 | } | 
| 315 |  | 
| 316 | RealType NPA::calcConservedQuantity(){ | 
| 317 |  | 
| 318 | thermostat = snap->getThermostat(); | 
| 319 | loadEta(); | 
| 320 |  | 
| 321 | // We need NkBT a lot, so just set it here: This is the RAW number | 
| 322 | // of integrableObjects, so no subtraction or addition of constraints or | 
| 323 | // orientational degrees of freedom: | 
| 324 | NkBT = info_->getNGlobalIntegrableObjects()*PhysicalConstants::kB *targetTemp; | 
| 325 |  | 
| 326 | // fkBT is used because the thermostat operates on more degrees of freedom | 
| 327 | // than the barostat (when there are particles with orientational degrees | 
| 328 | // of freedom). | 
| 329 | fkBT = info_->getNdf()*PhysicalConstants::kB *targetTemp; | 
| 330 |  | 
| 331 | RealType conservedQuantity; | 
| 332 | RealType totalEnergy; | 
| 333 | RealType thermostat_kinetic; | 
| 334 | RealType thermostat_potential; | 
| 335 | RealType barostat_kinetic; | 
| 336 | RealType barostat_potential; | 
| 337 | RealType trEta; | 
| 338 |  | 
| 339 | totalEnergy = thermo.getTotalEnergy(); | 
| 340 |  | 
| 341 | thermostat_kinetic = 0.0; | 
| 342 | thermostat_potential = 0.0; | 
| 343 |  | 
| 344 | SquareMatrix<RealType, 3> tmp = eta.transpose() * eta; | 
| 345 | trEta = tmp.trace(); | 
| 346 |  | 
| 347 | barostat_kinetic = NkBT * tb2 * trEta /(2.0 * PhysicalConstants::energyConvert); | 
| 348 |  | 
| 349 | barostat_potential = (targetPressure * thermo.getVolume() / PhysicalConstants::pressureConvert) /PhysicalConstants::energyConvert; | 
| 350 |  | 
| 351 | conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + | 
| 352 | barostat_kinetic + barostat_potential; | 
| 353 |  | 
| 354 | return conservedQuantity; | 
| 355 |  | 
| 356 | } | 
| 357 |  | 
| 358 | void NPA::loadEta() { | 
| 359 | eta= snap->getBarostat(); | 
| 360 |  | 
| 361 | //if (!eta.isDiagonal()) { | 
| 362 | //    sprintf( painCave.errMsg, | 
| 363 | //             "NPA error: the diagonal elements of eta matrix are not the same or etaMat is not a diagonal matrix"); | 
| 364 | //    painCave.isFatal = 1; | 
| 365 | //    simError(); | 
| 366 | //} | 
| 367 | } | 
| 368 |  | 
| 369 | void NPA::saveEta() { | 
| 370 | snap->setBarostat(eta); | 
| 371 | } | 
| 372 |  | 
| 373 | } | 
| 374 |  |