| 1 | /* | 
| 2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Redistributions of source code must retain the above copyright | 
| 10 | *    notice, this list of conditions and the following disclaimer. | 
| 11 | * | 
| 12 | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | *    notice, this list of conditions and the following disclaimer in the | 
| 14 | *    documentation and/or other materials provided with the | 
| 15 | *    distribution. | 
| 16 | * | 
| 17 | * This software is provided "AS IS," without a warranty of any | 
| 18 | * kind. All express or implied conditions, representations and | 
| 19 | * warranties, including any implied warranty of merchantability, | 
| 20 | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 | * be liable for any damages suffered by licensee as a result of | 
| 23 | * using, modifying or distributing the software or its | 
| 24 | * derivatives. In no event will the University of Notre Dame or its | 
| 25 | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 | * direct, indirect, special, consequential, incidental or punitive | 
| 27 | * damages, however caused and regardless of the theory of liability, | 
| 28 | * arising out of the use of or inability to use software, even if the | 
| 29 | * University of Notre Dame has been advised of the possibility of | 
| 30 | * such damages. | 
| 31 | * | 
| 32 | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | * research, please cite the appropriate papers when you publish your | 
| 34 | * work.  Good starting points are: | 
| 35 | * | 
| 36 | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). | 
| 39 | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | */ | 
| 42 |  | 
| 43 | #include "brains/SimInfo.hpp" | 
| 44 | #include "brains/Thermo.hpp" | 
| 45 | #include "integrators/IntegratorCreator.hpp" | 
| 46 | #include "integrators/NPAT.hpp" | 
| 47 | #include "primitives/Molecule.hpp" | 
| 48 | #include "utils/PhysicalConstants.hpp" | 
| 49 | #include "utils/simError.h" | 
| 50 |  | 
| 51 | namespace OpenMD { | 
| 52 |  | 
| 53 | void NPAT::evolveEtaA() { | 
| 54 |  | 
| 55 | eta(2,2) += dt2 *  instaVol * (press(2, 2) - targetPressure/PhysicalConstants::pressureConvert) / (NkBT*tb2); | 
| 56 | oldEta = eta; | 
| 57 | } | 
| 58 |  | 
| 59 | void NPAT::evolveEtaB() { | 
| 60 |  | 
| 61 | prevEta = eta; | 
| 62 | eta(2,2) = oldEta(2, 2) + dt2 *  instaVol * | 
| 63 | (press(2, 2) - targetPressure/PhysicalConstants::pressureConvert) / (NkBT*tb2); | 
| 64 | } | 
| 65 |  | 
| 66 | void NPAT::calcVelScale(){ | 
| 67 |  | 
| 68 | for (int i = 0; i < 3; i++ ) { | 
| 69 | for (int j = 0; j < 3; j++ ) { | 
| 70 | vScale(i, j) = eta(i, j); | 
| 71 |  | 
| 72 | if (i == j) { | 
| 73 | vScale(i, j) += thermostat.first; | 
| 74 | } | 
| 75 | } | 
| 76 | } | 
| 77 | } | 
| 78 |  | 
| 79 | void NPAT::getVelScaleA(Vector3d& sc, const Vector3d& vel){ | 
| 80 | sc = vScale * vel; | 
| 81 | } | 
| 82 |  | 
| 83 | void NPAT::getVelScaleB(Vector3d& sc, int index ) { | 
| 84 | sc = vScale * oldVel[index]; | 
| 85 | } | 
| 86 |  | 
| 87 | void NPAT::getPosScale(const Vector3d& pos, const Vector3d& COM, int index, Vector3d& sc) { | 
| 88 |  | 
| 89 | /**@todo */ | 
| 90 | Vector3d rj = (oldPos[index] + pos)/(RealType)2.0 -COM; | 
| 91 | sc = eta * rj; | 
| 92 | } | 
| 93 |  | 
| 94 | void NPAT::scaleSimBox(){ | 
| 95 | Mat3x3d scaleMat; | 
| 96 |  | 
| 97 | for(int i=0; i<3; i++){ | 
| 98 | for(int j=0; j<3; j++){ | 
| 99 | scaleMat(i, j) = 0.0; | 
| 100 | if(i==j) { | 
| 101 | scaleMat(i, j) = 1.0; | 
| 102 | } | 
| 103 | } | 
| 104 | } | 
| 105 |  | 
| 106 | scaleMat(2, 2) = exp(dt*eta(2, 2)); | 
| 107 | Mat3x3d hmat = snap->getHmat(); | 
| 108 | hmat = hmat *scaleMat; | 
| 109 | snap->setHmat(hmat); | 
| 110 | } | 
| 111 |  | 
| 112 | bool NPAT::etaConverged() { | 
| 113 | int i; | 
| 114 | RealType diffEta, sumEta; | 
| 115 |  | 
| 116 | sumEta = 0; | 
| 117 | for(i = 0; i < 3; i++) { | 
| 118 | sumEta += pow(prevEta(i, i) - eta(i, i), 2); | 
| 119 | } | 
| 120 |  | 
| 121 | diffEta = sqrt( sumEta / 3.0 ); | 
| 122 |  | 
| 123 | return ( diffEta <= etaTolerance ); | 
| 124 | } | 
| 125 |  | 
| 126 | RealType NPAT::calcConservedQuantity(){ | 
| 127 |  | 
| 128 | thermostat = snap->getThermostat(); | 
| 129 | loadEta(); | 
| 130 |  | 
| 131 | // We need NkBT a lot, so just set it here: This is the RAW number | 
| 132 | // of integrableObjects, so no subtraction or addition of constraints or | 
| 133 | // orientational degrees of freedom: | 
| 134 | NkBT = info_->getNGlobalIntegrableObjects()*PhysicalConstants::kB *targetTemp; | 
| 135 |  | 
| 136 | // fkBT is used because the thermostat operates on more degrees of freedom | 
| 137 | // than the barostat (when there are particles with orientational degrees | 
| 138 | // of freedom). | 
| 139 | fkBT = info_->getNdf()*PhysicalConstants::kB *targetTemp; | 
| 140 |  | 
| 141 | RealType conservedQuantity; | 
| 142 | RealType totalEnergy; | 
| 143 | RealType thermostat_kinetic; | 
| 144 | RealType thermostat_potential; | 
| 145 | RealType barostat_kinetic; | 
| 146 | RealType barostat_potential; | 
| 147 | RealType trEta; | 
| 148 |  | 
| 149 | totalEnergy = thermo.getTotalEnergy(); | 
| 150 |  | 
| 151 | thermostat_kinetic = fkBT * tt2 * thermostat.first * | 
| 152 | thermostat.first /(2.0 * PhysicalConstants::energyConvert); | 
| 153 |  | 
| 154 | thermostat_potential = fkBT* thermostat.second / PhysicalConstants::energyConvert; | 
| 155 |  | 
| 156 | SquareMatrix<RealType, 3> tmp = eta.transpose() * eta; | 
| 157 | trEta = tmp.trace(); | 
| 158 |  | 
| 159 | barostat_kinetic = NkBT * tb2 * trEta /(2.0 * PhysicalConstants::energyConvert); | 
| 160 |  | 
| 161 | barostat_potential = (targetPressure * thermo.getVolume() / PhysicalConstants::pressureConvert) /PhysicalConstants::energyConvert; | 
| 162 |  | 
| 163 | conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + | 
| 164 | barostat_kinetic + barostat_potential; | 
| 165 |  | 
| 166 | return conservedQuantity; | 
| 167 |  | 
| 168 | } | 
| 169 |  | 
| 170 | void NPAT::loadEta() { | 
| 171 | eta= snap->getBarostat(); | 
| 172 |  | 
| 173 | //if (!eta.isDiagonal()) { | 
| 174 | //    sprintf( painCave.errMsg, | 
| 175 | //             "NPAT error: the diagonal elements of eta matrix are not the same or etaMat is not a diagonal matrix"); | 
| 176 | //    painCave.isFatal = 1; | 
| 177 | //    simError(); | 
| 178 | //} | 
| 179 | } | 
| 180 |  | 
| 181 | void NPAT::saveEta() { | 
| 182 | snap->setBarostat(eta); | 
| 183 | } | 
| 184 |  | 
| 185 | } | 
| 186 |  |