| 1 | gezelter | 246 | /* | 
| 2 |  |  | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 |  |  | * | 
| 4 |  |  | * The University of Notre Dame grants you ("Licensee") a | 
| 5 |  |  | * non-exclusive, royalty free, license to use, modify and | 
| 6 |  |  | * redistribute this software in source and binary code form, provided | 
| 7 |  |  | * that the following conditions are met: | 
| 8 |  |  | * | 
| 9 |  |  | * 1. Acknowledgement of the program authors must be made in any | 
| 10 |  |  | *    publication of scientific results based in part on use of the | 
| 11 |  |  | *    program.  An acceptable form of acknowledgement is citation of | 
| 12 |  |  | *    the article in which the program was described (Matthew | 
| 13 |  |  | *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 |  |  | *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 |  |  | *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 |  |  | *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 |  |  | * | 
| 18 |  |  | * 2. Redistributions of source code must retain the above copyright | 
| 19 |  |  | *    notice, this list of conditions and the following disclaimer. | 
| 20 |  |  | * | 
| 21 |  |  | * 3. Redistributions in binary form must reproduce the above copyright | 
| 22 |  |  | *    notice, this list of conditions and the following disclaimer in the | 
| 23 |  |  | *    documentation and/or other materials provided with the | 
| 24 |  |  | *    distribution. | 
| 25 |  |  | * | 
| 26 |  |  | * This software is provided "AS IS," without a warranty of any | 
| 27 |  |  | * kind. All express or implied conditions, representations and | 
| 28 |  |  | * warranties, including any implied warranty of merchantability, | 
| 29 |  |  | * fitness for a particular purpose or non-infringement, are hereby | 
| 30 |  |  | * excluded.  The University of Notre Dame and its licensors shall not | 
| 31 |  |  | * be liable for any damages suffered by licensee as a result of | 
| 32 |  |  | * using, modifying or distributing the software or its | 
| 33 |  |  | * derivatives. In no event will the University of Notre Dame or its | 
| 34 |  |  | * licensors be liable for any lost revenue, profit or data, or for | 
| 35 |  |  | * direct, indirect, special, consequential, incidental or punitive | 
| 36 |  |  | * damages, however caused and regardless of the theory of liability, | 
| 37 |  |  | * arising out of the use of or inability to use software, even if the | 
| 38 |  |  | * University of Notre Dame has been advised of the possibility of | 
| 39 |  |  | * such damages. | 
| 40 |  |  | */ | 
| 41 |  |  |  | 
| 42 | gezelter | 2 | #include <math.h> | 
| 43 |  |  |  | 
| 44 | tim | 3 | #include "brains/SimInfo.hpp" | 
| 45 |  |  | #include "brains/Thermo.hpp" | 
| 46 | gezelter | 246 | #include "integrators/NPT.hpp" | 
| 47 |  |  | #include "math/SquareMatrix3.hpp" | 
| 48 |  |  | #include "primitives/Molecule.hpp" | 
| 49 |  |  | #include "utils/OOPSEConstant.hpp" | 
| 50 | tim | 3 | #include "utils/simError.h" | 
| 51 | gezelter | 2 |  | 
| 52 |  |  | // Basic isotropic thermostating and barostating via the Melchionna | 
| 53 |  |  | // modification of the Hoover algorithm: | 
| 54 |  |  | // | 
| 55 |  |  | //    Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, | 
| 56 |  |  | //       Molec. Phys., 78, 533. | 
| 57 |  |  | // | 
| 58 |  |  | //           and | 
| 59 |  |  | // | 
| 60 |  |  | //    Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. | 
| 61 |  |  |  | 
| 62 | gezelter | 246 | namespace oopse { | 
| 63 | gezelter | 2 |  | 
| 64 | gezelter | 246 | NPT::NPT(SimInfo* info) : | 
| 65 |  |  | VelocityVerletIntegrator(info), chiTolerance(1e-6), etaTolerance(1e-6), maxIterNum_(4) { | 
| 66 | gezelter | 2 |  | 
| 67 | gezelter | 246 | Globals* simParams = info_->getSimParams(); | 
| 68 |  |  |  | 
| 69 |  |  | if (!simParams->getUseInitXSstate()) { | 
| 70 |  |  | Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 71 |  |  | currSnapshot->setChi(0.0); | 
| 72 |  |  | currSnapshot->setIntegralOfChiDt(0.0); | 
| 73 |  |  | currSnapshot->setEta(Mat3x3d(0.0)); | 
| 74 |  |  | } | 
| 75 |  |  |  | 
| 76 |  |  | if (!simParams->haveTargetTemp()) { | 
| 77 |  |  | sprintf(painCave.errMsg, "You can't use the NVT integrator without a targetTemp!\n"); | 
| 78 |  |  | painCave.isFatal = 1; | 
| 79 |  |  | painCave.severity = OOPSE_ERROR; | 
| 80 |  |  | simError(); | 
| 81 |  |  | } else { | 
| 82 |  |  | targetTemp = simParams->getTargetTemp(); | 
| 83 |  |  | } | 
| 84 | gezelter | 2 |  | 
| 85 | gezelter | 246 | // We must set tauThermostat | 
| 86 |  |  | if (!simParams->haveTauThermostat()) { | 
| 87 |  |  | sprintf(painCave.errMsg, "If you use the constant temperature\n" | 
| 88 |  |  | "\tintegrator, you must set tauThermostat_.\n"); | 
| 89 | gezelter | 2 |  | 
| 90 | gezelter | 246 | painCave.severity = OOPSE_ERROR; | 
| 91 |  |  | painCave.isFatal = 1; | 
| 92 |  |  | simError(); | 
| 93 |  |  | } else { | 
| 94 |  |  | tauThermostat = simParams->getTauThermostat(); | 
| 95 |  |  | } | 
| 96 | gezelter | 2 |  | 
| 97 | gezelter | 246 | if (!simParams->haveTargetPressure()) { | 
| 98 |  |  | sprintf(painCave.errMsg, "NPT error: You can't use the NPT integrator\n" | 
| 99 |  |  | "   without a targetPressure!\n"); | 
| 100 | gezelter | 2 |  | 
| 101 | gezelter | 246 | painCave.isFatal = 1; | 
| 102 |  |  | simError(); | 
| 103 |  |  | } else { | 
| 104 |  |  | targetPressure = simParams->getTargetPressure(); | 
| 105 |  |  | } | 
| 106 |  |  |  | 
| 107 |  |  | if (!simParams->haveTauBarostat()) { | 
| 108 |  |  | sprintf(painCave.errMsg, | 
| 109 |  |  | "If you use the NPT integrator, you must set tauBarostat.\n"); | 
| 110 |  |  | painCave.severity = OOPSE_ERROR; | 
| 111 |  |  | painCave.isFatal = 1; | 
| 112 |  |  | simError(); | 
| 113 |  |  | } else { | 
| 114 |  |  | tauBarostat = simParams->getTauBarostat(); | 
| 115 |  |  | } | 
| 116 |  |  |  | 
| 117 |  |  | tt2 = tauThermostat * tauThermostat; | 
| 118 |  |  | tb2 = tauBarostat * tauBarostat; | 
| 119 | gezelter | 2 |  | 
| 120 | gezelter | 246 | update(); | 
| 121 | gezelter | 2 | } | 
| 122 |  |  |  | 
| 123 | gezelter | 246 | NPT::~NPT() { | 
| 124 | gezelter | 2 | } | 
| 125 |  |  |  | 
| 126 | gezelter | 246 | void NPT::doUpdate() { | 
| 127 | gezelter | 2 |  | 
| 128 | gezelter | 246 | oldPos.resize(info_->getNIntegrableObjects()); | 
| 129 |  |  | oldVel.resize(info_->getNIntegrableObjects()); | 
| 130 |  |  | oldJi.resize(info_->getNIntegrableObjects()); | 
| 131 | gezelter | 2 |  | 
| 132 | gezelter | 246 | } | 
| 133 | gezelter | 2 |  | 
| 134 | gezelter | 246 | void NPT::moveA() { | 
| 135 |  |  | SimInfo::MoleculeIterator i; | 
| 136 |  |  | Molecule::IntegrableObjectIterator  j; | 
| 137 |  |  | Molecule* mol; | 
| 138 |  |  | StuntDouble* integrableObject; | 
| 139 |  |  | Vector3d Tb, ji; | 
| 140 |  |  | double mass; | 
| 141 |  |  | Vector3d vel; | 
| 142 |  |  | Vector3d pos; | 
| 143 |  |  | Vector3d frc; | 
| 144 |  |  | Vector3d sc; | 
| 145 |  |  | int index; | 
| 146 | gezelter | 2 |  | 
| 147 | gezelter | 246 | chi= currentSnapshot_->getChi(); | 
| 148 |  |  | integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); | 
| 149 |  |  | loadEta(); | 
| 150 |  |  |  | 
| 151 |  |  | instaTemp =thermo.getTemperature(); | 
| 152 |  |  | press = thermo.getPressureTensor(); | 
| 153 |  |  | instaPress = OOPSEConstant::pressureConvert* (press(0, 0) + press(1, 1) + press(2, 2)) / 3.0; | 
| 154 |  |  | instaVol =thermo.getVolume(); | 
| 155 | gezelter | 2 |  | 
| 156 | gezelter | 246 | Vector3d  COM = info_->getCom(); | 
| 157 | gezelter | 2 |  | 
| 158 | gezelter | 246 | //evolve velocity half step | 
| 159 | gezelter | 2 |  | 
| 160 | gezelter | 246 | calcVelScale(); | 
| 161 | gezelter | 2 |  | 
| 162 | gezelter | 246 | for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { | 
| 163 |  |  | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 164 |  |  | integrableObject = mol->nextIntegrableObject(j)) { | 
| 165 |  |  |  | 
| 166 |  |  | vel = integrableObject->getVel(); | 
| 167 |  |  | frc = integrableObject->getFrc(); | 
| 168 | gezelter | 2 |  | 
| 169 | gezelter | 246 | mass = integrableObject->getMass(); | 
| 170 | gezelter | 2 |  | 
| 171 | gezelter | 246 | getVelScaleA(sc, vel); | 
| 172 | gezelter | 2 |  | 
| 173 | gezelter | 246 | // velocity half step  (use chi from previous step here): | 
| 174 |  |  | //vel[j] += dt2 * ((frc[j] / mass) * OOPSEConstant::energyConvert - sc[j]); | 
| 175 |  |  | vel += dt2*OOPSEConstant::energyConvert/mass* frc - dt2*sc; | 
| 176 |  |  | integrableObject->setVel(vel); | 
| 177 | gezelter | 2 |  | 
| 178 | gezelter | 246 | if (integrableObject->isDirectional()) { | 
| 179 | gezelter | 2 |  | 
| 180 | gezelter | 246 | // get and convert the torque to body frame | 
| 181 | gezelter | 2 |  | 
| 182 | gezelter | 246 | Tb = integrableObject->lab2Body(integrableObject->getTrq()); | 
| 183 | gezelter | 2 |  | 
| 184 | gezelter | 246 | // get the angular momentum, and propagate a half step | 
| 185 | gezelter | 2 |  | 
| 186 | gezelter | 246 | ji = integrableObject->getJ(); | 
| 187 | gezelter | 2 |  | 
| 188 | gezelter | 246 | //ji[j] += dt2 * (Tb[j] * OOPSEConstant::energyConvert - ji[j]*chi); | 
| 189 |  |  | ji += dt2*OOPSEConstant::energyConvert * Tb - dt2*chi* ji; | 
| 190 |  |  |  | 
| 191 |  |  | rotAlgo->rotate(integrableObject, ji, dt); | 
| 192 | gezelter | 2 |  | 
| 193 | gezelter | 246 | integrableObject->setJ(ji); | 
| 194 |  |  | } | 
| 195 |  |  |  | 
| 196 |  |  | } | 
| 197 |  |  | } | 
| 198 |  |  | // evolve chi and eta  half step | 
| 199 | gezelter | 2 |  | 
| 200 | gezelter | 246 | chi += dt2 * (instaTemp / targetTemp - 1.0) / tt2; | 
| 201 |  |  |  | 
| 202 |  |  | evolveEtaA(); | 
| 203 | gezelter | 2 |  | 
| 204 | gezelter | 246 | //calculate the integral of chidt | 
| 205 |  |  | integralOfChidt += dt2 * chi; | 
| 206 |  |  |  | 
| 207 |  |  | index = 0; | 
| 208 |  |  | for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { | 
| 209 |  |  | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 210 |  |  | integrableObject = mol->nextIntegrableObject(j)) { | 
| 211 |  |  | oldPos[index++] = integrableObject->getPos(); | 
| 212 |  |  | } | 
| 213 | gezelter | 2 | } | 
| 214 | gezelter | 246 |  | 
| 215 |  |  | //the first estimation of r(t+dt) is equal to  r(t) | 
| 216 | gezelter | 2 |  | 
| 217 | gezelter | 246 | for(int k = 0; k < maxIterNum_; k++) { | 
| 218 |  |  | index = 0; | 
| 219 |  |  | for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { | 
| 220 |  |  | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 221 |  |  | integrableObject = mol->nextIntegrableObject(j)) { | 
| 222 | gezelter | 2 |  | 
| 223 | gezelter | 246 | vel = integrableObject->getVel(); | 
| 224 |  |  | pos = integrableObject->getPos(); | 
| 225 | gezelter | 2 |  | 
| 226 | gezelter | 246 | this->getPosScale(pos, COM, index, sc); | 
| 227 | gezelter | 2 |  | 
| 228 | gezelter | 246 | pos = oldPos[index] + dt * (vel + sc); | 
| 229 |  |  | integrableObject->setPos(pos); | 
| 230 | gezelter | 2 |  | 
| 231 | gezelter | 246 | ++index; | 
| 232 |  |  | } | 
| 233 |  |  | } | 
| 234 | gezelter | 2 |  | 
| 235 | gezelter | 246 | rattle->constraintA(); | 
| 236 |  |  | } | 
| 237 | gezelter | 2 |  | 
| 238 | gezelter | 246 | // Scale the box after all the positions have been moved: | 
| 239 | gezelter | 2 |  | 
| 240 | gezelter | 246 | this->scaleSimBox(); | 
| 241 | gezelter | 2 |  | 
| 242 | gezelter | 246 | currentSnapshot_->setChi(chi); | 
| 243 |  |  | currentSnapshot_->setIntegralOfChiDt(integralOfChidt); | 
| 244 | gezelter | 2 |  | 
| 245 | gezelter | 246 | saveEta(); | 
| 246 | gezelter | 2 | } | 
| 247 |  |  |  | 
| 248 | gezelter | 246 | void NPT::moveB(void) { | 
| 249 |  |  | SimInfo::MoleculeIterator i; | 
| 250 |  |  | Molecule::IntegrableObjectIterator  j; | 
| 251 |  |  | Molecule* mol; | 
| 252 |  |  | StuntDouble* integrableObject; | 
| 253 |  |  | int index; | 
| 254 |  |  | Vector3d Tb; | 
| 255 |  |  | Vector3d ji; | 
| 256 |  |  | Vector3d sc; | 
| 257 |  |  | Vector3d vel; | 
| 258 |  |  | Vector3d frc; | 
| 259 |  |  | double mass; | 
| 260 | gezelter | 2 |  | 
| 261 |  |  |  | 
| 262 | gezelter | 246 | chi= currentSnapshot_->getChi(); | 
| 263 |  |  | integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); | 
| 264 |  |  | double oldChi  = chi; | 
| 265 |  |  | double prevChi; | 
| 266 | gezelter | 2 |  | 
| 267 | gezelter | 246 | loadEta(); | 
| 268 |  |  |  | 
| 269 |  |  | //save velocity and angular momentum | 
| 270 |  |  | index = 0; | 
| 271 |  |  | for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { | 
| 272 |  |  | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 273 |  |  | integrableObject = mol->nextIntegrableObject(j)) { | 
| 274 |  |  |  | 
| 275 |  |  | oldVel[index] = integrableObject->getVel(); | 
| 276 |  |  | oldJi[index] = integrableObject->getJ(); | 
| 277 |  |  | ++index; | 
| 278 |  |  | } | 
| 279 | gezelter | 2 | } | 
| 280 |  |  |  | 
| 281 | gezelter | 246 | // do the iteration: | 
| 282 |  |  | instaVol =thermo.getVolume(); | 
| 283 | gezelter | 2 |  | 
| 284 | gezelter | 246 | for(int k = 0; k < maxIterNum_; k++) { | 
| 285 |  |  | instaTemp =thermo.getTemperature(); | 
| 286 |  |  | instaPress =thermo.getPressure(); | 
| 287 | gezelter | 2 |  | 
| 288 | gezelter | 246 | // evolve chi another half step using the temperature at t + dt/2 | 
| 289 |  |  | prevChi = chi; | 
| 290 |  |  | chi = oldChi + dt2 * (instaTemp / targetTemp - 1.0) / tt2; | 
| 291 | gezelter | 2 |  | 
| 292 | gezelter | 246 | //evolve eta | 
| 293 |  |  | this->evolveEtaB(); | 
| 294 |  |  | this->calcVelScale(); | 
| 295 | gezelter | 2 |  | 
| 296 | gezelter | 246 | index = 0; | 
| 297 |  |  | for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { | 
| 298 |  |  | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 299 |  |  | integrableObject = mol->nextIntegrableObject(j)) { | 
| 300 | gezelter | 2 |  | 
| 301 | gezelter | 246 | frc = integrableObject->getFrc(); | 
| 302 |  |  | vel = integrableObject->getVel(); | 
| 303 | gezelter | 2 |  | 
| 304 | gezelter | 246 | mass = integrableObject->getMass(); | 
| 305 | gezelter | 2 |  | 
| 306 | gezelter | 246 | getVelScaleB(sc, index); | 
| 307 | gezelter | 2 |  | 
| 308 | gezelter | 246 | // velocity half step | 
| 309 |  |  | //vel[j] = oldVel[3 * i + j] + dt2 *((frc[j] / mass) * OOPSEConstant::energyConvert - sc[j]); | 
| 310 |  |  | vel = oldVel[index] + dt2*OOPSEConstant::energyConvert/mass* frc - dt2*sc; | 
| 311 |  |  | integrableObject->setVel(vel); | 
| 312 | gezelter | 2 |  | 
| 313 | gezelter | 246 | if (integrableObject->isDirectional()) { | 
| 314 |  |  | // get and convert the torque to body frame | 
| 315 |  |  | Tb = integrableObject->lab2Body(integrableObject->getTrq()); | 
| 316 | gezelter | 2 |  | 
| 317 | gezelter | 246 | //ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * OOPSEConstant::energyConvert - oldJi[3*i+j]*chi); | 
| 318 |  |  | ji = oldJi[index] + dt2*OOPSEConstant::energyConvert*Tb - dt2*chi*oldJi[index]; | 
| 319 |  |  | integrableObject->setJ(ji); | 
| 320 |  |  | } | 
| 321 | gezelter | 2 |  | 
| 322 | gezelter | 246 | ++index; | 
| 323 |  |  | } | 
| 324 |  |  | } | 
| 325 |  |  |  | 
| 326 |  |  | rattle->constraintB(); | 
| 327 | gezelter | 2 |  | 
| 328 | gezelter | 246 | if ((fabs(prevChi - chi) <= chiTolerance) && this->etaConverged()) | 
| 329 |  |  | break; | 
| 330 | gezelter | 2 | } | 
| 331 |  |  |  | 
| 332 | gezelter | 246 | //calculate integral of chidt | 
| 333 |  |  | integralOfChidt += dt2 * chi; | 
| 334 | gezelter | 2 |  | 
| 335 | gezelter | 246 | currentSnapshot_->setChi(chi); | 
| 336 |  |  | currentSnapshot_->setIntegralOfChiDt(integralOfChidt); | 
| 337 | gezelter | 2 |  | 
| 338 | gezelter | 246 | saveEta(); | 
| 339 | gezelter | 2 | } | 
| 340 |  |  |  | 
| 341 |  |  | } |