| 1 |
< |
/* |
| 1 |
> |
/* |
| 2 |
|
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
| 3 |
|
* |
| 4 |
|
* The University of Notre Dame grants you ("Licensee") a |
| 6 |
|
* redistribute this software in source and binary code form, provided |
| 7 |
|
* that the following conditions are met: |
| 8 |
|
* |
| 9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
| 10 |
< |
* publication of scientific results based in part on use of the |
| 11 |
< |
* program. An acceptable form of acknowledgement is citation of |
| 12 |
< |
* the article in which the program was described (Matthew |
| 13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
| 14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
| 15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
| 16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
| 17 |
< |
* |
| 18 |
< |
* 2. Redistributions of source code must retain the above copyright |
| 9 |
> |
* 1. Redistributions of source code must retain the above copyright |
| 10 |
|
* notice, this list of conditions and the following disclaimer. |
| 11 |
|
* |
| 12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
| 12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
| 13 |
|
* notice, this list of conditions and the following disclaimer in the |
| 14 |
|
* documentation and/or other materials provided with the |
| 15 |
|
* distribution. |
| 28 |
|
* arising out of the use of or inability to use software, even if the |
| 29 |
|
* University of Notre Dame has been advised of the possibility of |
| 30 |
|
* such damages. |
| 31 |
+ |
* |
| 32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
| 33 |
+ |
* research, please cite the appropriate papers when you publish your |
| 34 |
+ |
* work. Good starting points are: |
| 35 |
+ |
* |
| 36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
| 37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
| 38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
| 39 |
+ |
* [4] Vardeman & Gezelter, in progress (2009). |
| 40 |
|
*/ |
| 41 |
|
|
| 42 |
|
#include <math.h> |
| 46 |
|
#include "integrators/NPT.hpp" |
| 47 |
|
#include "math/SquareMatrix3.hpp" |
| 48 |
|
#include "primitives/Molecule.hpp" |
| 49 |
< |
#include "utils/OOPSEConstant.hpp" |
| 49 |
> |
#include "utils/PhysicalConstants.hpp" |
| 50 |
|
#include "utils/simError.h" |
| 51 |
|
|
| 52 |
|
// Basic isotropic thermostating and barostating via the Melchionna |
| 59 |
|
// |
| 60 |
|
// Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. |
| 61 |
|
|
| 62 |
< |
namespace oopse { |
| 62 |
> |
namespace OpenMD { |
| 63 |
|
|
| 64 |
< |
NPT::NPT(SimInfo* info) : |
| 64 |
> |
NPT::NPT(SimInfo* info) : |
| 65 |
|
VelocityVerletIntegrator(info), chiTolerance(1e-6), etaTolerance(1e-6), maxIterNum_(4) { |
| 66 |
|
|
| 67 |
< |
Globals* simParams = info_->getSimParams(); |
| 67 |
> |
Globals* simParams = info_->getSimParams(); |
| 68 |
|
|
| 69 |
< |
if (!simParams->getUseInitXSstate()) { |
| 69 |
> |
if (!simParams->getUseIntialExtendedSystemState()) { |
| 70 |
|
Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 71 |
|
currSnapshot->setChi(0.0); |
| 72 |
|
currSnapshot->setIntegralOfChiDt(0.0); |
| 73 |
|
currSnapshot->setEta(Mat3x3d(0.0)); |
| 74 |
< |
} |
| 74 |
> |
} |
| 75 |
|
|
| 76 |
< |
if (!simParams->haveTargetTemp()) { |
| 76 |
> |
if (!simParams->haveTargetTemp()) { |
| 77 |
|
sprintf(painCave.errMsg, "You can't use the NVT integrator without a targetTemp!\n"); |
| 78 |
|
painCave.isFatal = 1; |
| 79 |
< |
painCave.severity = OOPSE_ERROR; |
| 79 |
> |
painCave.severity = OPENMD_ERROR; |
| 80 |
|
simError(); |
| 81 |
< |
} else { |
| 81 |
> |
} else { |
| 82 |
|
targetTemp = simParams->getTargetTemp(); |
| 83 |
< |
} |
| 83 |
> |
} |
| 84 |
|
|
| 85 |
< |
// We must set tauThermostat |
| 86 |
< |
if (!simParams->haveTauThermostat()) { |
| 85 |
> |
// We must set tauThermostat |
| 86 |
> |
if (!simParams->haveTauThermostat()) { |
| 87 |
|
sprintf(painCave.errMsg, "If you use the constant temperature\n" |
| 88 |
< |
"\tintegrator, you must set tauThermostat_.\n"); |
| 88 |
> |
"\tintegrator, you must set tauThermostat.\n"); |
| 89 |
|
|
| 90 |
< |
painCave.severity = OOPSE_ERROR; |
| 90 |
> |
painCave.severity = OPENMD_ERROR; |
| 91 |
|
painCave.isFatal = 1; |
| 92 |
|
simError(); |
| 93 |
< |
} else { |
| 93 |
> |
} else { |
| 94 |
|
tauThermostat = simParams->getTauThermostat(); |
| 95 |
< |
} |
| 95 |
> |
} |
| 96 |
|
|
| 97 |
< |
if (!simParams->haveTargetPressure()) { |
| 97 |
> |
if (!simParams->haveTargetPressure()) { |
| 98 |
|
sprintf(painCave.errMsg, "NPT error: You can't use the NPT integrator\n" |
| 99 |
< |
" without a targetPressure!\n"); |
| 99 |
> |
" without a targetPressure!\n"); |
| 100 |
|
|
| 101 |
|
painCave.isFatal = 1; |
| 102 |
|
simError(); |
| 103 |
< |
} else { |
| 103 |
> |
} else { |
| 104 |
|
targetPressure = simParams->getTargetPressure(); |
| 105 |
< |
} |
| 105 |
> |
} |
| 106 |
|
|
| 107 |
< |
if (!simParams->haveTauBarostat()) { |
| 107 |
> |
if (!simParams->haveTauBarostat()) { |
| 108 |
|
sprintf(painCave.errMsg, |
| 109 |
|
"If you use the NPT integrator, you must set tauBarostat.\n"); |
| 110 |
< |
painCave.severity = OOPSE_ERROR; |
| 110 |
> |
painCave.severity = OPENMD_ERROR; |
| 111 |
|
painCave.isFatal = 1; |
| 112 |
|
simError(); |
| 113 |
< |
} else { |
| 113 |
> |
} else { |
| 114 |
|
tauBarostat = simParams->getTauBarostat(); |
| 115 |
< |
} |
| 115 |
> |
} |
| 116 |
|
|
| 117 |
< |
tt2 = tauThermostat * tauThermostat; |
| 118 |
< |
tb2 = tauBarostat * tauBarostat; |
| 117 |
> |
tt2 = tauThermostat * tauThermostat; |
| 118 |
> |
tb2 = tauBarostat * tauBarostat; |
| 119 |
|
|
| 120 |
< |
update(); |
| 121 |
< |
} |
| 120 |
> |
update(); |
| 121 |
> |
} |
| 122 |
|
|
| 123 |
< |
NPT::~NPT() { |
| 124 |
< |
} |
| 123 |
> |
NPT::~NPT() { |
| 124 |
> |
} |
| 125 |
|
|
| 126 |
< |
void NPT::doUpdate() { |
| 126 |
> |
void NPT::doUpdate() { |
| 127 |
|
|
| 128 |
|
oldPos.resize(info_->getNIntegrableObjects()); |
| 129 |
|
oldVel.resize(info_->getNIntegrableObjects()); |
| 130 |
|
oldJi.resize(info_->getNIntegrableObjects()); |
| 131 |
|
|
| 132 |
< |
} |
| 132 |
> |
} |
| 133 |
|
|
| 134 |
< |
void NPT::moveA() { |
| 134 |
> |
void NPT::moveA() { |
| 135 |
|
SimInfo::MoleculeIterator i; |
| 136 |
|
Molecule::IntegrableObjectIterator j; |
| 137 |
|
Molecule* mol; |
| 138 |
|
StuntDouble* integrableObject; |
| 139 |
|
Vector3d Tb, ji; |
| 140 |
< |
double mass; |
| 140 |
> |
RealType mass; |
| 141 |
|
Vector3d vel; |
| 142 |
|
Vector3d pos; |
| 143 |
|
Vector3d frc; |
| 150 |
|
|
| 151 |
|
instaTemp =thermo.getTemperature(); |
| 152 |
|
press = thermo.getPressureTensor(); |
| 153 |
< |
instaPress = OOPSEConstant::pressureConvert* (press(0, 0) + press(1, 1) + press(2, 2)) / 3.0; |
| 153 |
> |
instaPress = PhysicalConstants::pressureConvert* (press(0, 0) + press(1, 1) + press(2, 2)) / 3.0; |
| 154 |
|
instaVol =thermo.getVolume(); |
| 155 |
|
|
| 156 |
|
Vector3d COM = info_->getCom(); |
| 160 |
|
calcVelScale(); |
| 161 |
|
|
| 162 |
|
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
| 163 |
< |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
| 164 |
< |
integrableObject = mol->nextIntegrableObject(j)) { |
| 163 |
> |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
| 164 |
> |
integrableObject = mol->nextIntegrableObject(j)) { |
| 165 |
|
|
| 166 |
< |
vel = integrableObject->getVel(); |
| 167 |
< |
frc = integrableObject->getFrc(); |
| 166 |
> |
vel = integrableObject->getVel(); |
| 167 |
> |
frc = integrableObject->getFrc(); |
| 168 |
|
|
| 169 |
< |
mass = integrableObject->getMass(); |
| 169 |
> |
mass = integrableObject->getMass(); |
| 170 |
|
|
| 171 |
< |
getVelScaleA(sc, vel); |
| 171 |
> |
getVelScaleA(sc, vel); |
| 172 |
|
|
| 173 |
< |
// velocity half step (use chi from previous step here): |
| 174 |
< |
//vel[j] += dt2 * ((frc[j] / mass) * OOPSEConstant::energyConvert - sc[j]); |
| 175 |
< |
vel += dt2*OOPSEConstant::energyConvert/mass* frc - dt2*sc; |
| 176 |
< |
integrableObject->setVel(vel); |
| 173 |
> |
// velocity half step (use chi from previous step here): |
| 174 |
> |
//vel[j] += dt2 * ((frc[j] / mass) * PhysicalConstants::energyConvert - sc[j]); |
| 175 |
> |
vel += dt2*PhysicalConstants::energyConvert/mass* frc - dt2*sc; |
| 176 |
> |
integrableObject->setVel(vel); |
| 177 |
|
|
| 178 |
< |
if (integrableObject->isDirectional()) { |
| 178 |
> |
if (integrableObject->isDirectional()) { |
| 179 |
|
|
| 180 |
< |
// get and convert the torque to body frame |
| 180 |
> |
// get and convert the torque to body frame |
| 181 |
|
|
| 182 |
< |
Tb = integrableObject->lab2Body(integrableObject->getTrq()); |
| 182 |
> |
Tb = integrableObject->lab2Body(integrableObject->getTrq()); |
| 183 |
|
|
| 184 |
< |
// get the angular momentum, and propagate a half step |
| 184 |
> |
// get the angular momentum, and propagate a half step |
| 185 |
|
|
| 186 |
< |
ji = integrableObject->getJ(); |
| 186 |
> |
ji = integrableObject->getJ(); |
| 187 |
|
|
| 188 |
< |
//ji[j] += dt2 * (Tb[j] * OOPSEConstant::energyConvert - ji[j]*chi); |
| 189 |
< |
ji += dt2*OOPSEConstant::energyConvert * Tb - dt2*chi* ji; |
| 188 |
> |
//ji[j] += dt2 * (Tb[j] * PhysicalConstants::energyConvert - ji[j]*chi); |
| 189 |
> |
ji += dt2*PhysicalConstants::energyConvert * Tb - dt2*chi* ji; |
| 190 |
|
|
| 191 |
< |
rotAlgo->rotate(integrableObject, ji, dt); |
| 191 |
> |
rotAlgo->rotate(integrableObject, ji, dt); |
| 192 |
|
|
| 193 |
< |
integrableObject->setJ(ji); |
| 194 |
< |
} |
| 193 |
> |
integrableObject->setJ(ji); |
| 194 |
> |
} |
| 195 |
|
|
| 196 |
< |
} |
| 196 |
> |
} |
| 197 |
|
} |
| 198 |
|
// evolve chi and eta half step |
| 199 |
|
|
| 206 |
|
|
| 207 |
|
index = 0; |
| 208 |
|
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
| 209 |
< |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
| 210 |
< |
integrableObject = mol->nextIntegrableObject(j)) { |
| 211 |
< |
oldPos[index++] = integrableObject->getPos(); |
| 212 |
< |
} |
| 209 |
> |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
| 210 |
> |
integrableObject = mol->nextIntegrableObject(j)) { |
| 211 |
> |
oldPos[index++] = integrableObject->getPos(); |
| 212 |
> |
} |
| 213 |
|
} |
| 214 |
|
|
| 215 |
|
//the first estimation of r(t+dt) is equal to r(t) |
| 216 |
|
|
| 217 |
|
for(int k = 0; k < maxIterNum_; k++) { |
| 218 |
< |
index = 0; |
| 219 |
< |
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
| 220 |
< |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
| 221 |
< |
integrableObject = mol->nextIntegrableObject(j)) { |
| 218 |
> |
index = 0; |
| 219 |
> |
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
| 220 |
> |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
| 221 |
> |
integrableObject = mol->nextIntegrableObject(j)) { |
| 222 |
|
|
| 223 |
< |
vel = integrableObject->getVel(); |
| 224 |
< |
pos = integrableObject->getPos(); |
| 223 |
> |
vel = integrableObject->getVel(); |
| 224 |
> |
pos = integrableObject->getPos(); |
| 225 |
|
|
| 226 |
< |
this->getPosScale(pos, COM, index, sc); |
| 226 |
> |
this->getPosScale(pos, COM, index, sc); |
| 227 |
|
|
| 228 |
< |
pos = oldPos[index] + dt * (vel + sc); |
| 229 |
< |
integrableObject->setPos(pos); |
| 228 |
> |
pos = oldPos[index] + dt * (vel + sc); |
| 229 |
> |
integrableObject->setPos(pos); |
| 230 |
|
|
| 231 |
< |
++index; |
| 232 |
< |
} |
| 233 |
< |
} |
| 231 |
> |
++index; |
| 232 |
> |
} |
| 233 |
> |
} |
| 234 |
|
|
| 235 |
< |
rattle->constraintA(); |
| 235 |
> |
rattle->constraintA(); |
| 236 |
|
} |
| 237 |
|
|
| 238 |
|
// Scale the box after all the positions have been moved: |
| 243 |
|
currentSnapshot_->setIntegralOfChiDt(integralOfChidt); |
| 244 |
|
|
| 245 |
|
saveEta(); |
| 246 |
< |
} |
| 246 |
> |
} |
| 247 |
|
|
| 248 |
< |
void NPT::moveB(void) { |
| 248 |
> |
void NPT::moveB(void) { |
| 249 |
|
SimInfo::MoleculeIterator i; |
| 250 |
|
Molecule::IntegrableObjectIterator j; |
| 251 |
|
Molecule* mol; |
| 256 |
|
Vector3d sc; |
| 257 |
|
Vector3d vel; |
| 258 |
|
Vector3d frc; |
| 259 |
< |
double mass; |
| 259 |
> |
RealType mass; |
| 260 |
|
|
| 261 |
|
|
| 262 |
|
chi= currentSnapshot_->getChi(); |
| 263 |
|
integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); |
| 264 |
< |
double oldChi = chi; |
| 265 |
< |
double prevChi; |
| 264 |
> |
RealType oldChi = chi; |
| 265 |
> |
RealType prevChi; |
| 266 |
|
|
| 267 |
|
loadEta(); |
| 268 |
|
|
| 269 |
|
//save velocity and angular momentum |
| 270 |
|
index = 0; |
| 271 |
|
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
| 272 |
< |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
| 273 |
< |
integrableObject = mol->nextIntegrableObject(j)) { |
| 272 |
> |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
| 273 |
> |
integrableObject = mol->nextIntegrableObject(j)) { |
| 274 |
|
|
| 275 |
< |
oldVel[index] = integrableObject->getVel(); |
| 276 |
< |
oldJi[index] = integrableObject->getJ(); |
| 277 |
< |
++index; |
| 278 |
< |
} |
| 275 |
> |
oldVel[index] = integrableObject->getVel(); |
| 276 |
> |
oldJi[index] = integrableObject->getJ(); |
| 277 |
> |
++index; |
| 278 |
> |
} |
| 279 |
|
} |
| 280 |
|
|
| 281 |
|
// do the iteration: |
| 282 |
|
instaVol =thermo.getVolume(); |
| 283 |
|
|
| 284 |
|
for(int k = 0; k < maxIterNum_; k++) { |
| 285 |
< |
instaTemp =thermo.getTemperature(); |
| 286 |
< |
instaPress =thermo.getPressure(); |
| 285 |
> |
instaTemp =thermo.getTemperature(); |
| 286 |
> |
instaPress =thermo.getPressure(); |
| 287 |
|
|
| 288 |
< |
// evolve chi another half step using the temperature at t + dt/2 |
| 289 |
< |
prevChi = chi; |
| 290 |
< |
chi = oldChi + dt2 * (instaTemp / targetTemp - 1.0) / tt2; |
| 288 |
> |
// evolve chi another half step using the temperature at t + dt/2 |
| 289 |
> |
prevChi = chi; |
| 290 |
> |
chi = oldChi + dt2 * (instaTemp / targetTemp - 1.0) / tt2; |
| 291 |
|
|
| 292 |
< |
//evolve eta |
| 293 |
< |
this->evolveEtaB(); |
| 294 |
< |
this->calcVelScale(); |
| 292 |
> |
//evolve eta |
| 293 |
> |
this->evolveEtaB(); |
| 294 |
> |
this->calcVelScale(); |
| 295 |
|
|
| 296 |
< |
index = 0; |
| 297 |
< |
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
| 298 |
< |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
| 299 |
< |
integrableObject = mol->nextIntegrableObject(j)) { |
| 296 |
> |
index = 0; |
| 297 |
> |
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
| 298 |
> |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
| 299 |
> |
integrableObject = mol->nextIntegrableObject(j)) { |
| 300 |
|
|
| 301 |
< |
frc = integrableObject->getFrc(); |
| 302 |
< |
vel = integrableObject->getVel(); |
| 301 |
> |
frc = integrableObject->getFrc(); |
| 302 |
> |
vel = integrableObject->getVel(); |
| 303 |
|
|
| 304 |
< |
mass = integrableObject->getMass(); |
| 304 |
> |
mass = integrableObject->getMass(); |
| 305 |
|
|
| 306 |
< |
getVelScaleB(sc, index); |
| 306 |
> |
getVelScaleB(sc, index); |
| 307 |
|
|
| 308 |
< |
// velocity half step |
| 309 |
< |
//vel[j] = oldVel[3 * i + j] + dt2 *((frc[j] / mass) * OOPSEConstant::energyConvert - sc[j]); |
| 310 |
< |
vel = oldVel[index] + dt2*OOPSEConstant::energyConvert/mass* frc - dt2*sc; |
| 311 |
< |
integrableObject->setVel(vel); |
| 308 |
> |
// velocity half step |
| 309 |
> |
//vel[j] = oldVel[3 * i + j] + dt2 *((frc[j] / mass) * PhysicalConstants::energyConvert - sc[j]); |
| 310 |
> |
vel = oldVel[index] + dt2*PhysicalConstants::energyConvert/mass* frc - dt2*sc; |
| 311 |
> |
integrableObject->setVel(vel); |
| 312 |
|
|
| 313 |
< |
if (integrableObject->isDirectional()) { |
| 314 |
< |
// get and convert the torque to body frame |
| 315 |
< |
Tb = integrableObject->lab2Body(integrableObject->getTrq()); |
| 313 |
> |
if (integrableObject->isDirectional()) { |
| 314 |
> |
// get and convert the torque to body frame |
| 315 |
> |
Tb = integrableObject->lab2Body(integrableObject->getTrq()); |
| 316 |
|
|
| 317 |
< |
//ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * OOPSEConstant::energyConvert - oldJi[3*i+j]*chi); |
| 318 |
< |
ji = oldJi[index] + dt2*OOPSEConstant::energyConvert*Tb - dt2*chi*oldJi[index]; |
| 319 |
< |
integrableObject->setJ(ji); |
| 320 |
< |
} |
| 317 |
> |
//ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * PhysicalConstants::energyConvert - oldJi[3*i+j]*chi); |
| 318 |
> |
ji = oldJi[index] + dt2*PhysicalConstants::energyConvert*Tb - dt2*chi*oldJi[index]; |
| 319 |
> |
integrableObject->setJ(ji); |
| 320 |
> |
} |
| 321 |
|
|
| 322 |
< |
++index; |
| 323 |
< |
} |
| 324 |
< |
} |
| 322 |
> |
++index; |
| 323 |
> |
} |
| 324 |
> |
} |
| 325 |
|
|
| 326 |
< |
rattle->constraintB(); |
| 326 |
> |
rattle->constraintB(); |
| 327 |
|
|
| 328 |
< |
if ((fabs(prevChi - chi) <= chiTolerance) && this->etaConverged()) |
| 329 |
< |
break; |
| 328 |
> |
if ((fabs(prevChi - chi) <= chiTolerance) && this->etaConverged()) |
| 329 |
> |
break; |
| 330 |
|
} |
| 331 |
|
|
| 332 |
|
//calculate integral of chidt |
| 336 |
|
currentSnapshot_->setIntegralOfChiDt(integralOfChidt); |
| 337 |
|
|
| 338 |
|
saveEta(); |
| 339 |
< |
} |
| 339 |
> |
} |
| 340 |
|
|
| 341 |
+ |
void NPT::resetIntegrator(){ |
| 342 |
+ |
currentSnapshot_->setChi(0.0); |
| 343 |
+ |
currentSnapshot_->setIntegralOfChiDt(0.0); |
| 344 |
+ |
resetEta(); |
| 345 |
+ |
} |
| 346 |
+ |
|
| 347 |
+ |
|
| 348 |
+ |
void NPT::resetEta() { |
| 349 |
+ |
Mat3x3d etaMat(0.0); |
| 350 |
+ |
currentSnapshot_->setEta(etaMat); |
| 351 |
+ |
} |
| 352 |
+ |
|
| 353 |
|
} |