| 1 | 
+ | 
/* | 
| 2 | 
+ | 
 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | 
+ | 
 * | 
| 4 | 
+ | 
 * The University of Notre Dame grants you ("Licensee") a | 
| 5 | 
+ | 
 * non-exclusive, royalty free, license to use, modify and | 
| 6 | 
+ | 
 * redistribute this software in source and binary code form, provided | 
| 7 | 
+ | 
 * that the following conditions are met: | 
| 8 | 
+ | 
 * | 
| 9 | 
+ | 
 * 1. Acknowledgement of the program authors must be made in any | 
| 10 | 
+ | 
 *    publication of scientific results based in part on use of the | 
| 11 | 
+ | 
 *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | 
+ | 
 *    the article in which the program was described (Matthew | 
| 13 | 
+ | 
 *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | 
+ | 
 *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | 
+ | 
 *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | 
+ | 
 *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | 
+ | 
 * | 
| 18 | 
+ | 
 * 2. Redistributions of source code must retain the above copyright | 
| 19 | 
+ | 
 *    notice, this list of conditions and the following disclaimer. | 
| 20 | 
+ | 
 * | 
| 21 | 
+ | 
 * 3. Redistributions in binary form must reproduce the above copyright | 
| 22 | 
+ | 
 *    notice, this list of conditions and the following disclaimer in the | 
| 23 | 
+ | 
 *    documentation and/or other materials provided with the | 
| 24 | 
+ | 
 *    distribution. | 
| 25 | 
+ | 
 * | 
| 26 | 
+ | 
 * This software is provided "AS IS," without a warranty of any | 
| 27 | 
+ | 
 * kind. All express or implied conditions, representations and | 
| 28 | 
+ | 
 * warranties, including any implied warranty of merchantability, | 
| 29 | 
+ | 
 * fitness for a particular purpose or non-infringement, are hereby | 
| 30 | 
+ | 
 * excluded.  The University of Notre Dame and its licensors shall not | 
| 31 | 
+ | 
 * be liable for any damages suffered by licensee as a result of | 
| 32 | 
+ | 
 * using, modifying or distributing the software or its | 
| 33 | 
+ | 
 * derivatives. In no event will the University of Notre Dame or its | 
| 34 | 
+ | 
 * licensors be liable for any lost revenue, profit or data, or for | 
| 35 | 
+ | 
 * direct, indirect, special, consequential, incidental or punitive | 
| 36 | 
+ | 
 * damages, however caused and regardless of the theory of liability, | 
| 37 | 
+ | 
 * arising out of the use of or inability to use software, even if the | 
| 38 | 
+ | 
 * University of Notre Dame has been advised of the possibility of | 
| 39 | 
+ | 
 * such damages. | 
| 40 | 
+ | 
 */ | 
| 41 | 
+ | 
  | 
| 42 | 
  | 
#include <math.h> | 
| 43 | 
  | 
 | 
| 44 | 
< | 
#include "Atom.hpp" | 
| 45 | 
< | 
#include "SRI.hpp" | 
| 46 | 
< | 
#include "AbstractClasses.hpp" | 
| 47 | 
< | 
#include "SimInfo.hpp" | 
| 48 | 
< | 
#include "ForceFields.hpp" | 
| 49 | 
< | 
#include "Thermo.hpp" | 
| 50 | 
< | 
#include "ReadWrite.hpp" | 
| 10 | 
< | 
#include "Integrator.hpp" | 
| 11 | 
< | 
#include "simError.h" | 
| 44 | 
> | 
#include "brains/SimInfo.hpp" | 
| 45 | 
> | 
#include "brains/Thermo.hpp" | 
| 46 | 
> | 
#include "integrators/NPT.hpp" | 
| 47 | 
> | 
#include "math/SquareMatrix3.hpp" | 
| 48 | 
> | 
#include "primitives/Molecule.hpp" | 
| 49 | 
> | 
#include "utils/OOPSEConstant.hpp" | 
| 50 | 
> | 
#include "utils/simError.h" | 
| 51 | 
  | 
 | 
| 13 | 
– | 
#ifdef IS_MPI | 
| 14 | 
– | 
#include "mpiSimulation.hpp" | 
| 15 | 
– | 
#endif | 
| 16 | 
– | 
 | 
| 17 | 
– | 
 | 
| 52 | 
  | 
// Basic isotropic thermostating and barostating via the Melchionna | 
| 53 | 
  | 
// modification of the Hoover algorithm: | 
| 54 | 
  | 
// | 
| 59 | 
  | 
// | 
| 60 | 
  | 
//    Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. | 
| 61 | 
  | 
 | 
| 62 | 
< | 
template<typename T> NPT<T>::NPT ( SimInfo *theInfo, ForceFields* the_ff): | 
| 29 | 
< | 
  T( theInfo, the_ff ) | 
| 30 | 
< | 
{ | 
| 31 | 
< | 
  GenericData* data; | 
| 32 | 
< | 
  DoubleData * chiValue; | 
| 33 | 
< | 
  DoubleData * integralOfChidtValue; | 
| 62 | 
> | 
namespace oopse { | 
| 63 | 
  | 
 | 
| 64 | 
< | 
  chiValue = NULL; | 
| 65 | 
< | 
  integralOfChidtValue = NULL; | 
| 64 | 
> | 
  NPT::NPT(SimInfo* info) : | 
| 65 | 
> | 
    VelocityVerletIntegrator(info), chiTolerance(1e-6), etaTolerance(1e-6), maxIterNum_(4) { | 
| 66 | 
  | 
 | 
| 67 | 
< | 
  chi = 0.0; | 
| 68 | 
< | 
  integralOfChidt = 0.0; | 
| 69 | 
< | 
  have_tau_thermostat = 0; | 
| 70 | 
< | 
  have_tau_barostat = 0; | 
| 71 | 
< | 
  have_target_temp = 0; | 
| 72 | 
< | 
  have_target_pressure = 0; | 
| 73 | 
< | 
  have_chi_tolerance = 0; | 
| 74 | 
< | 
  have_eta_tolerance = 0; | 
| 75 | 
< | 
  have_pos_iter_tolerance = 0; | 
| 67 | 
> | 
      Globals* simParams = info_->getSimParams(); | 
| 68 | 
> | 
     | 
| 69 | 
> | 
      if (!simParams->getUseIntialExtendedSystemState()) { | 
| 70 | 
> | 
        Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 71 | 
> | 
        currSnapshot->setChi(0.0); | 
| 72 | 
> | 
        currSnapshot->setIntegralOfChiDt(0.0); | 
| 73 | 
> | 
        currSnapshot->setEta(Mat3x3d(0.0)); | 
| 74 | 
> | 
      } | 
| 75 | 
> | 
     | 
| 76 | 
> | 
      if (!simParams->haveTargetTemp()) { | 
| 77 | 
> | 
        sprintf(painCave.errMsg, "You can't use the NVT integrator without a targetTemp!\n"); | 
| 78 | 
> | 
        painCave.isFatal = 1; | 
| 79 | 
> | 
        painCave.severity = OOPSE_ERROR; | 
| 80 | 
> | 
        simError(); | 
| 81 | 
> | 
      } else { | 
| 82 | 
> | 
        targetTemp = simParams->getTargetTemp(); | 
| 83 | 
> | 
      } | 
| 84 | 
  | 
 | 
| 85 | 
< | 
  // retrieve chi and integralOfChidt from simInfo | 
| 86 | 
< | 
  data = info->getProperty(CHIVALUE_ID); | 
| 87 | 
< | 
  if(data){ | 
| 88 | 
< | 
    chiValue = dynamic_cast<DoubleData*>(data); | 
| 52 | 
< | 
  } | 
| 85 | 
> | 
      // We must set tauThermostat | 
| 86 | 
> | 
      if (!simParams->haveTauThermostat()) { | 
| 87 | 
> | 
        sprintf(painCave.errMsg, "If you use the constant temperature\n" | 
| 88 | 
> | 
                "\tintegrator, you must set tauThermostat_.\n"); | 
| 89 | 
  | 
 | 
| 90 | 
< | 
  data = info->getProperty(INTEGRALOFCHIDT_ID); | 
| 91 | 
< | 
  if(data){ | 
| 92 | 
< | 
    integralOfChidtValue = dynamic_cast<DoubleData*>(data); | 
| 93 | 
< | 
  } | 
| 90 | 
> | 
        painCave.severity = OOPSE_ERROR; | 
| 91 | 
> | 
        painCave.isFatal = 1; | 
| 92 | 
> | 
        simError(); | 
| 93 | 
> | 
      } else { | 
| 94 | 
> | 
        tauThermostat = simParams->getTauThermostat(); | 
| 95 | 
> | 
      } | 
| 96 | 
  | 
 | 
| 97 | 
< | 
  // chi and integralOfChidt should appear by pair | 
| 98 | 
< | 
  if(chiValue && integralOfChidtValue){ | 
| 99 | 
< | 
    chi = chiValue->getData(); | 
| 62 | 
< | 
    integralOfChidt = integralOfChidtValue->getData(); | 
| 63 | 
< | 
  } | 
| 97 | 
> | 
      if (!simParams->haveTargetPressure()) { | 
| 98 | 
> | 
        sprintf(painCave.errMsg, "NPT error: You can't use the NPT integrator\n" | 
| 99 | 
> | 
                "   without a targetPressure!\n"); | 
| 100 | 
  | 
 | 
| 101 | 
< | 
  oldPos = new double[3*integrableObjects.size()]; | 
| 102 | 
< | 
  oldVel = new double[3*integrableObjects.size()]; | 
| 103 | 
< | 
  oldJi = new double[3*integrableObjects.size()]; | 
| 101 | 
> | 
        painCave.isFatal = 1; | 
| 102 | 
> | 
        simError(); | 
| 103 | 
> | 
      } else { | 
| 104 | 
> | 
        targetPressure = simParams->getTargetPressure(); | 
| 105 | 
> | 
      } | 
| 106 | 
> | 
     | 
| 107 | 
> | 
      if (!simParams->haveTauBarostat()) { | 
| 108 | 
> | 
        sprintf(painCave.errMsg, | 
| 109 | 
> | 
                "If you use the NPT integrator, you must set tauBarostat.\n"); | 
| 110 | 
> | 
        painCave.severity = OOPSE_ERROR; | 
| 111 | 
> | 
        painCave.isFatal = 1; | 
| 112 | 
> | 
        simError(); | 
| 113 | 
> | 
      } else { | 
| 114 | 
> | 
        tauBarostat = simParams->getTauBarostat(); | 
| 115 | 
> | 
      } | 
| 116 | 
> | 
     | 
| 117 | 
> | 
      tt2 = tauThermostat * tauThermostat; | 
| 118 | 
> | 
      tb2 = tauBarostat * tauBarostat; | 
| 119 | 
  | 
 | 
| 120 | 
< | 
} | 
| 120 | 
> | 
      update(); | 
| 121 | 
> | 
    } | 
| 122 | 
  | 
 | 
| 123 | 
< | 
template<typename T> NPT<T>::~NPT() { | 
| 124 | 
< | 
  delete[] oldPos; | 
| 73 | 
< | 
  delete[] oldVel; | 
| 74 | 
< | 
  delete[] oldJi; | 
| 75 | 
< | 
} | 
| 123 | 
> | 
  NPT::~NPT() { | 
| 124 | 
> | 
  } | 
| 125 | 
  | 
 | 
| 126 | 
< | 
template<typename T> void NPT<T>::moveA() { | 
| 126 | 
> | 
  void NPT::doUpdate() { | 
| 127 | 
  | 
 | 
| 128 | 
< | 
  //new version of NPT | 
| 129 | 
< | 
  int i, j, k; | 
| 130 | 
< | 
  double Tb[3], ji[3]; | 
| 82 | 
< | 
  double mass; | 
| 83 | 
< | 
  double vel[3], pos[3], frc[3]; | 
| 84 | 
< | 
  double sc[3]; | 
| 85 | 
< | 
  double COM[3]; | 
| 128 | 
> | 
    oldPos.resize(info_->getNIntegrableObjects()); | 
| 129 | 
> | 
    oldVel.resize(info_->getNIntegrableObjects()); | 
| 130 | 
> | 
    oldJi.resize(info_->getNIntegrableObjects()); | 
| 131 | 
  | 
 | 
| 132 | 
< | 
  instaTemp = tStats->getTemperature(); | 
| 88 | 
< | 
  tStats->getPressureTensor( press ); | 
| 89 | 
< | 
  instaPress = p_convert * (press[0][0] + press[1][1] + press[2][2]) / 3.0; | 
| 90 | 
< | 
  instaVol = tStats->getVolume(); | 
| 132 | 
> | 
  } | 
| 133 | 
  | 
 | 
| 134 | 
< | 
  tStats->getCOM(COM); | 
| 134 | 
> | 
  void NPT::moveA() { | 
| 135 | 
> | 
    SimInfo::MoleculeIterator i; | 
| 136 | 
> | 
    Molecule::IntegrableObjectIterator  j; | 
| 137 | 
> | 
    Molecule* mol; | 
| 138 | 
> | 
    StuntDouble* integrableObject; | 
| 139 | 
> | 
    Vector3d Tb, ji; | 
| 140 | 
> | 
    RealType mass; | 
| 141 | 
> | 
    Vector3d vel; | 
| 142 | 
> | 
    Vector3d pos; | 
| 143 | 
> | 
    Vector3d frc; | 
| 144 | 
> | 
    Vector3d sc; | 
| 145 | 
> | 
    int index; | 
| 146 | 
  | 
 | 
| 147 | 
< | 
  //evolve velocity half step | 
| 147 | 
> | 
    chi= currentSnapshot_->getChi(); | 
| 148 | 
> | 
    integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); | 
| 149 | 
> | 
    loadEta(); | 
| 150 | 
> | 
     | 
| 151 | 
> | 
    instaTemp =thermo.getTemperature(); | 
| 152 | 
> | 
    press = thermo.getPressureTensor(); | 
| 153 | 
> | 
    instaPress = OOPSEConstant::pressureConvert* (press(0, 0) + press(1, 1) + press(2, 2)) / 3.0; | 
| 154 | 
> | 
    instaVol =thermo.getVolume(); | 
| 155 | 
  | 
 | 
| 156 | 
< | 
  calcVelScale(); | 
| 97 | 
< | 
   | 
| 98 | 
< | 
  for( i=0; i<integrableObjects.size(); i++ ){ | 
| 156 | 
> | 
    Vector3d  COM = info_->getCom(); | 
| 157 | 
  | 
 | 
| 158 | 
< | 
    integrableObjects[i]->getVel( vel ); | 
| 101 | 
< | 
    integrableObjects[i]->getFrc( frc ); | 
| 158 | 
> | 
    //evolve velocity half step | 
| 159 | 
  | 
 | 
| 160 | 
< | 
    mass = integrableObjects[i]->getMass(); | 
| 160 | 
> | 
    calcVelScale(); | 
| 161 | 
  | 
 | 
| 162 | 
< | 
    getVelScaleA( sc, vel ); | 
| 162 | 
> | 
    for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { | 
| 163 | 
> | 
      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 164 | 
> | 
           integrableObject = mol->nextIntegrableObject(j)) { | 
| 165 | 
> | 
                 | 
| 166 | 
> | 
        vel = integrableObject->getVel(); | 
| 167 | 
> | 
        frc = integrableObject->getFrc(); | 
| 168 | 
  | 
 | 
| 169 | 
< | 
    for (j=0; j < 3; j++) { | 
| 169 | 
> | 
        mass = integrableObject->getMass(); | 
| 170 | 
  | 
 | 
| 171 | 
< | 
      // velocity half step  (use chi from previous step here): | 
| 110 | 
< | 
      vel[j] += dt2 * ((frc[j] / mass ) * eConvert - sc[j]); | 
| 171 | 
> | 
        getVelScaleA(sc, vel); | 
| 172 | 
  | 
 | 
| 173 | 
< | 
    } | 
| 173 | 
> | 
        // velocity half step  (use chi from previous step here): | 
| 174 | 
> | 
        //vel[j] += dt2 * ((frc[j] / mass) * OOPSEConstant::energyConvert - sc[j]); | 
| 175 | 
> | 
        vel += dt2*OOPSEConstant::energyConvert/mass* frc - dt2*sc; | 
| 176 | 
> | 
        integrableObject->setVel(vel); | 
| 177 | 
  | 
 | 
| 178 | 
< | 
    integrableObjects[i]->setVel( vel ); | 
| 178 | 
> | 
        if (integrableObject->isDirectional()) { | 
| 179 | 
  | 
 | 
| 180 | 
< | 
    if( integrableObjects[i]->isDirectional() ){ | 
| 180 | 
> | 
          // get and convert the torque to body frame | 
| 181 | 
  | 
 | 
| 182 | 
< | 
      // get and convert the torque to body frame | 
| 182 | 
> | 
          Tb = integrableObject->lab2Body(integrableObject->getTrq()); | 
| 183 | 
  | 
 | 
| 184 | 
< | 
      integrableObjects[i]->getTrq( Tb ); | 
| 121 | 
< | 
      integrableObjects[i]->lab2Body( Tb ); | 
| 184 | 
> | 
          // get the angular momentum, and propagate a half step | 
| 185 | 
  | 
 | 
| 186 | 
< | 
      // get the angular momentum, and propagate a half step | 
| 186 | 
> | 
          ji = integrableObject->getJ(); | 
| 187 | 
  | 
 | 
| 188 | 
< | 
      integrableObjects[i]->getJ( ji ); | 
| 188 | 
> | 
          //ji[j] += dt2 * (Tb[j] * OOPSEConstant::energyConvert - ji[j]*chi); | 
| 189 | 
> | 
          ji += dt2*OOPSEConstant::energyConvert * Tb - dt2*chi* ji; | 
| 190 | 
> | 
                 | 
| 191 | 
> | 
          rotAlgo->rotate(integrableObject, ji, dt); | 
| 192 | 
  | 
 | 
| 193 | 
< | 
      for (j=0; j < 3; j++) | 
| 194 | 
< | 
        ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi); | 
| 193 | 
> | 
          integrableObject->setJ(ji); | 
| 194 | 
> | 
        } | 
| 195 | 
> | 
             | 
| 196 | 
> | 
      } | 
| 197 | 
> | 
    } | 
| 198 | 
> | 
    // evolve chi and eta  half step | 
| 199 | 
  | 
 | 
| 200 | 
< | 
      this->rotationPropagation( integrableObjects[i], ji ); | 
| 200 | 
> | 
    chi += dt2 * (instaTemp / targetTemp - 1.0) / tt2; | 
| 201 | 
> | 
     | 
| 202 | 
> | 
    evolveEtaA(); | 
| 203 | 
  | 
 | 
| 204 | 
< | 
      integrableObjects[i]->setJ( ji ); | 
| 204 | 
> | 
    //calculate the integral of chidt | 
| 205 | 
> | 
    integralOfChidt += dt2 * chi; | 
| 206 | 
> | 
     | 
| 207 | 
> | 
    index = 0; | 
| 208 | 
> | 
    for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { | 
| 209 | 
> | 
      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 210 | 
> | 
           integrableObject = mol->nextIntegrableObject(j)) { | 
| 211 | 
> | 
        oldPos[index++] = integrableObject->getPos();             | 
| 212 | 
> | 
      } | 
| 213 | 
  | 
    } | 
| 214 | 
< | 
  } | 
| 214 | 
> | 
     | 
| 215 | 
> | 
    //the first estimation of r(t+dt) is equal to  r(t) | 
| 216 | 
  | 
 | 
| 217 | 
< | 
  // evolve chi and eta  half step | 
| 217 | 
> | 
    for(int k = 0; k < maxIterNum_; k++) { | 
| 218 | 
> | 
      index = 0; | 
| 219 | 
> | 
      for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { | 
| 220 | 
> | 
        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 221 | 
> | 
             integrableObject = mol->nextIntegrableObject(j)) { | 
| 222 | 
  | 
 | 
| 223 | 
< | 
  evolveChiA(); | 
| 224 | 
< | 
  evolveEtaA(); | 
| 223 | 
> | 
          vel = integrableObject->getVel(); | 
| 224 | 
> | 
          pos = integrableObject->getPos(); | 
| 225 | 
  | 
 | 
| 226 | 
< | 
  //calculate the integral of chidt | 
| 142 | 
< | 
  integralOfChidt += dt2*chi; | 
| 226 | 
> | 
          this->getPosScale(pos, COM, index, sc); | 
| 227 | 
  | 
 | 
| 228 | 
< | 
  //save the old positions | 
| 229 | 
< | 
  for(i = 0; i < integrableObjects.size(); i++){ | 
| 146 | 
< | 
    integrableObjects[i]->getPos(pos); | 
| 147 | 
< | 
    for(j = 0; j < 3; j++) | 
| 148 | 
< | 
      oldPos[i*3 + j] = pos[j]; | 
| 149 | 
< | 
  } | 
| 228 | 
> | 
          pos = oldPos[index] + dt * (vel + sc); | 
| 229 | 
> | 
          integrableObject->setPos(pos);      | 
| 230 | 
  | 
 | 
| 231 | 
< | 
  //the first estimation of r(t+dt) is equal to  r(t) | 
| 231 | 
> | 
          ++index; | 
| 232 | 
> | 
        } | 
| 233 | 
> | 
      } | 
| 234 | 
  | 
 | 
| 235 | 
< | 
  for(k = 0; k < 5; k ++){ | 
| 235 | 
> | 
      rattle->constraintA(); | 
| 236 | 
> | 
    } | 
| 237 | 
  | 
 | 
| 238 | 
< | 
    for(i =0 ; i < integrableObjects.size(); i++){ | 
| 238 | 
> | 
    // Scale the box after all the positions have been moved: | 
| 239 | 
  | 
 | 
| 240 | 
< | 
      integrableObjects[i]->getVel(vel); | 
| 158 | 
< | 
      integrableObjects[i]->getPos(pos); | 
| 240 | 
> | 
    this->scaleSimBox(); | 
| 241 | 
  | 
 | 
| 242 | 
< | 
      this->getPosScale( pos, COM, i, sc ); | 
| 242 | 
> | 
    currentSnapshot_->setChi(chi); | 
| 243 | 
> | 
    currentSnapshot_->setIntegralOfChiDt(integralOfChidt); | 
| 244 | 
  | 
 | 
| 245 | 
< | 
      for(j = 0; j < 3; j++) | 
| 163 | 
< | 
        pos[j] = oldPos[i*3 + j] + dt*(vel[j] + sc[j]); | 
| 164 | 
< | 
 | 
| 165 | 
< | 
      integrableObjects[i]->setPos( pos ); | 
| 166 | 
< | 
    } | 
| 167 | 
< | 
     | 
| 168 | 
< | 
    if(nConstrained) | 
| 169 | 
< | 
      constrainA(); | 
| 245 | 
> | 
    saveEta(); | 
| 246 | 
  | 
  } | 
| 247 | 
  | 
 | 
| 248 | 
+ | 
  void NPT::moveB(void) { | 
| 249 | 
+ | 
    SimInfo::MoleculeIterator i; | 
| 250 | 
+ | 
    Molecule::IntegrableObjectIterator  j; | 
| 251 | 
+ | 
    Molecule* mol; | 
| 252 | 
+ | 
    StuntDouble* integrableObject; | 
| 253 | 
+ | 
    int index; | 
| 254 | 
+ | 
    Vector3d Tb; | 
| 255 | 
+ | 
    Vector3d ji; | 
| 256 | 
+ | 
    Vector3d sc; | 
| 257 | 
+ | 
    Vector3d vel; | 
| 258 | 
+ | 
    Vector3d frc; | 
| 259 | 
+ | 
    RealType mass; | 
| 260 | 
  | 
 | 
| 173 | 
– | 
  // Scale the box after all the positions have been moved: | 
| 261 | 
  | 
 | 
| 262 | 
< | 
  this->scaleSimBox(); | 
| 263 | 
< | 
} | 
| 262 | 
> | 
    chi= currentSnapshot_->getChi(); | 
| 263 | 
> | 
    integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); | 
| 264 | 
> | 
    RealType oldChi  = chi; | 
| 265 | 
> | 
    RealType prevChi; | 
| 266 | 
  | 
 | 
| 267 | 
< | 
template<typename T> void NPT<T>::moveB( void ){ | 
| 268 | 
< | 
 | 
| 269 | 
< | 
  //new version of NPT | 
| 270 | 
< | 
  int i, j, k; | 
| 271 | 
< | 
  double Tb[3], ji[3], sc[3]; | 
| 272 | 
< | 
  double vel[3], frc[3]; | 
| 273 | 
< | 
  double mass; | 
| 274 | 
< | 
 | 
| 275 | 
< | 
  // Set things up for the iteration: | 
| 276 | 
< | 
 | 
| 277 | 
< | 
  for( i=0; i<integrableObjects.size(); i++ ){ | 
| 278 | 
< | 
 | 
| 190 | 
< | 
    integrableObjects[i]->getVel( vel ); | 
| 191 | 
< | 
 | 
| 192 | 
< | 
    for (j=0; j < 3; j++) | 
| 193 | 
< | 
      oldVel[3*i + j]  = vel[j]; | 
| 194 | 
< | 
 | 
| 195 | 
< | 
    if( integrableObjects[i]->isDirectional() ){ | 
| 196 | 
< | 
 | 
| 197 | 
< | 
      integrableObjects[i]->getJ( ji ); | 
| 198 | 
< | 
 | 
| 199 | 
< | 
      for (j=0; j < 3; j++) | 
| 200 | 
< | 
        oldJi[3*i + j] = ji[j]; | 
| 201 | 
< | 
 | 
| 267 | 
> | 
    loadEta(); | 
| 268 | 
> | 
     | 
| 269 | 
> | 
    //save velocity and angular momentum | 
| 270 | 
> | 
    index = 0; | 
| 271 | 
> | 
    for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { | 
| 272 | 
> | 
      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 273 | 
> | 
           integrableObject = mol->nextIntegrableObject(j)) { | 
| 274 | 
> | 
                 | 
| 275 | 
> | 
        oldVel[index] = integrableObject->getVel(); | 
| 276 | 
> | 
        oldJi[index] = integrableObject->getJ(); | 
| 277 | 
> | 
        ++index; | 
| 278 | 
> | 
      } | 
| 279 | 
  | 
    } | 
| 203 | 
– | 
  } | 
| 280 | 
  | 
 | 
| 281 | 
< | 
  // do the iteration: | 
| 281 | 
> | 
    // do the iteration: | 
| 282 | 
> | 
    instaVol =thermo.getVolume(); | 
| 283 | 
  | 
 | 
| 284 | 
< | 
  instaVol = tStats->getVolume(); | 
| 284 | 
> | 
    for(int k = 0; k < maxIterNum_; k++) { | 
| 285 | 
> | 
      instaTemp =thermo.getTemperature(); | 
| 286 | 
> | 
      instaPress =thermo.getPressure(); | 
| 287 | 
  | 
 | 
| 288 | 
< | 
  for (k=0; k < 4; k++) { | 
| 288 | 
> | 
      // evolve chi another half step using the temperature at t + dt/2 | 
| 289 | 
> | 
      prevChi = chi; | 
| 290 | 
> | 
      chi = oldChi + dt2 * (instaTemp / targetTemp - 1.0) / tt2; | 
| 291 | 
  | 
 | 
| 292 | 
< | 
    instaTemp = tStats->getTemperature(); | 
| 293 | 
< | 
    instaPress = tStats->getPressure(); | 
| 292 | 
> | 
      //evolve eta | 
| 293 | 
> | 
      this->evolveEtaB(); | 
| 294 | 
> | 
      this->calcVelScale(); | 
| 295 | 
  | 
 | 
| 296 | 
< | 
    // evolve chi another half step using the temperature at t + dt/2 | 
| 296 | 
> | 
      index = 0; | 
| 297 | 
> | 
      for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { | 
| 298 | 
> | 
        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 299 | 
> | 
             integrableObject = mol->nextIntegrableObject(j)) {             | 
| 300 | 
  | 
 | 
| 301 | 
< | 
    this->evolveChiB(); | 
| 302 | 
< | 
    this->evolveEtaB(); | 
| 218 | 
< | 
    this->calcVelScale(); | 
| 301 | 
> | 
          frc = integrableObject->getFrc(); | 
| 302 | 
> | 
          vel = integrableObject->getVel(); | 
| 303 | 
  | 
 | 
| 304 | 
< | 
    for( i=0; i<integrableObjects.size(); i++ ){ | 
| 304 | 
> | 
          mass = integrableObject->getMass(); | 
| 305 | 
  | 
 | 
| 306 | 
< | 
      integrableObjects[i]->getFrc( frc ); | 
| 223 | 
< | 
      integrableObjects[i]->getVel(vel); | 
| 306 | 
> | 
          getVelScaleB(sc, index); | 
| 307 | 
  | 
 | 
| 308 | 
< | 
      mass = integrableObjects[i]->getMass(); | 
| 308 | 
> | 
          // velocity half step | 
| 309 | 
> | 
          //vel[j] = oldVel[3 * i + j] + dt2 *((frc[j] / mass) * OOPSEConstant::energyConvert - sc[j]); | 
| 310 | 
> | 
          vel = oldVel[index] + dt2*OOPSEConstant::energyConvert/mass* frc - dt2*sc; | 
| 311 | 
> | 
          integrableObject->setVel(vel); | 
| 312 | 
  | 
 | 
| 313 | 
< | 
      getVelScaleB( sc, i ); | 
| 313 | 
> | 
          if (integrableObject->isDirectional()) { | 
| 314 | 
> | 
            // get and convert the torque to body frame | 
| 315 | 
> | 
            Tb = integrableObject->lab2Body(integrableObject->getTrq()); | 
| 316 | 
  | 
 | 
| 317 | 
< | 
      // velocity half step | 
| 318 | 
< | 
      for (j=0; j < 3; j++) | 
| 319 | 
< | 
        vel[j] = oldVel[3*i+j] + dt2 * ((frc[j] / mass ) * eConvert - sc[j]); | 
| 317 | 
> | 
            //ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * OOPSEConstant::energyConvert - oldJi[3*i+j]*chi); | 
| 318 | 
> | 
            ji = oldJi[index] + dt2*OOPSEConstant::energyConvert*Tb - dt2*chi*oldJi[index]; | 
| 319 | 
> | 
            integrableObject->setJ(ji); | 
| 320 | 
> | 
          } | 
| 321 | 
  | 
 | 
| 322 | 
< | 
      integrableObjects[i]->setVel( vel ); | 
| 323 | 
< | 
 | 
| 235 | 
< | 
      if( integrableObjects[i]->isDirectional() ){ | 
| 236 | 
< | 
 | 
| 237 | 
< | 
        // get and convert the torque to body frame | 
| 238 | 
< | 
 | 
| 239 | 
< | 
        integrableObjects[i]->getTrq( Tb ); | 
| 240 | 
< | 
        integrableObjects[i]->lab2Body( Tb ); | 
| 241 | 
< | 
 | 
| 242 | 
< | 
        for (j=0; j < 3; j++) | 
| 243 | 
< | 
          ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * eConvert - oldJi[3*i+j]*chi); | 
| 244 | 
< | 
 | 
| 245 | 
< | 
          integrableObjects[i]->setJ( ji ); | 
| 322 | 
> | 
          ++index; | 
| 323 | 
> | 
        } | 
| 324 | 
  | 
      } | 
| 325 | 
+ | 
         | 
| 326 | 
+ | 
      rattle->constraintB(); | 
| 327 | 
+ | 
 | 
| 328 | 
+ | 
      if ((fabs(prevChi - chi) <= chiTolerance) && this->etaConverged()) | 
| 329 | 
+ | 
        break; | 
| 330 | 
  | 
    } | 
| 331 | 
  | 
 | 
| 332 | 
< | 
    if(nConstrained) | 
| 333 | 
< | 
      constrainB(); | 
| 332 | 
> | 
    //calculate integral of chidt | 
| 333 | 
> | 
    integralOfChidt += dt2 * chi; | 
| 334 | 
  | 
 | 
| 335 | 
< | 
    if ( this->chiConverged() && this->etaConverged() ) break; | 
| 336 | 
< | 
  } | 
| 335 | 
> | 
    currentSnapshot_->setChi(chi); | 
| 336 | 
> | 
    currentSnapshot_->setIntegralOfChiDt(integralOfChidt);     | 
| 337 | 
  | 
 | 
| 338 | 
< | 
  //calculate integral of chida | 
| 256 | 
< | 
  integralOfChidt += dt2*chi; | 
| 257 | 
< | 
 | 
| 258 | 
< | 
 | 
| 259 | 
< | 
} | 
| 260 | 
< | 
 | 
| 261 | 
< | 
template<typename T> void NPT<T>::resetIntegrator() { | 
| 262 | 
< | 
  chi = 0.0; | 
| 263 | 
< | 
  T::resetIntegrator(); | 
| 264 | 
< | 
} | 
| 265 | 
< | 
 | 
| 266 | 
< | 
template<typename T> void NPT<T>::evolveChiA() { | 
| 267 | 
< | 
  chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; | 
| 268 | 
< | 
  oldChi = chi; | 
| 269 | 
< | 
} | 
| 270 | 
< | 
 | 
| 271 | 
< | 
template<typename T> void NPT<T>::evolveChiB() { | 
| 272 | 
< | 
 | 
| 273 | 
< | 
  prevChi = chi; | 
| 274 | 
< | 
  chi = oldChi + dt2 * ( instaTemp / targetTemp - 1.0) / tt2; | 
| 275 | 
< | 
} | 
| 276 | 
< | 
 | 
| 277 | 
< | 
template<typename T> bool NPT<T>::chiConverged() { | 
| 278 | 
< | 
 | 
| 279 | 
< | 
  return ( fabs( prevChi - chi ) <= chiTolerance ); | 
| 280 | 
< | 
} | 
| 281 | 
< | 
 | 
| 282 | 
< | 
template<typename T> int NPT<T>::readyCheck() { | 
| 283 | 
< | 
 | 
| 284 | 
< | 
  //check parent's readyCheck() first | 
| 285 | 
< | 
  if (T::readyCheck() == -1) | 
| 286 | 
< | 
    return -1; | 
| 287 | 
< | 
 | 
| 288 | 
< | 
  // First check to see if we have a target temperature. | 
| 289 | 
< | 
  // Not having one is fatal. | 
| 290 | 
< | 
 | 
| 291 | 
< | 
  if (!have_target_temp) { | 
| 292 | 
< | 
    sprintf( painCave.errMsg, | 
| 293 | 
< | 
             "NPT error: You can't use the NPT integrator\n" | 
| 294 | 
< | 
             "   without a targetTemp!\n" | 
| 295 | 
< | 
             ); | 
| 296 | 
< | 
    painCave.isFatal = 1; | 
| 297 | 
< | 
    simError(); | 
| 298 | 
< | 
    return -1; | 
| 338 | 
> | 
    saveEta(); | 
| 339 | 
  | 
  } | 
| 340 | 
  | 
 | 
| 341 | 
< | 
  if (!have_target_pressure) { | 
| 342 | 
< | 
    sprintf( painCave.errMsg, | 
| 343 | 
< | 
             "NPT error: You can't use the NPT integrator\n" | 
| 344 | 
< | 
             "   without a targetPressure!\n" | 
| 305 | 
< | 
             ); | 
| 306 | 
< | 
    painCave.isFatal = 1; | 
| 307 | 
< | 
    simError(); | 
| 308 | 
< | 
    return -1; | 
| 341 | 
> | 
  void NPT::resetIntegrator(){ | 
| 342 | 
> | 
      currentSnapshot_->setChi(0.0); | 
| 343 | 
> | 
      currentSnapshot_->setIntegralOfChiDt(0.0); | 
| 344 | 
> | 
      resetEta(); | 
| 345 | 
  | 
  } | 
| 346 | 
  | 
 | 
| 311 | 
– | 
  // We must set tauThermostat. | 
| 347 | 
  | 
 | 
| 348 | 
< | 
  if (!have_tau_thermostat) { | 
| 349 | 
< | 
    sprintf( painCave.errMsg, | 
| 350 | 
< | 
             "NPT error: If you use the NPT\n" | 
| 351 | 
< | 
             "   integrator, you must set tauThermostat.\n"); | 
| 352 | 
< | 
    painCave.isFatal = 1; | 
| 318 | 
< | 
    simError(); | 
| 319 | 
< | 
    return -1; | 
| 320 | 
< | 
  } | 
| 321 | 
< | 
 | 
| 322 | 
< | 
  // We must set tauBarostat. | 
| 323 | 
< | 
 | 
| 324 | 
< | 
  if (!have_tau_barostat) { | 
| 325 | 
< | 
    sprintf( painCave.errMsg, | 
| 326 | 
< | 
             "If you use the NPT integrator, you must set tauBarostat.\n"); | 
| 327 | 
< | 
    painCave.severity = OOPSE_ERROR; | 
| 328 | 
< | 
    painCave.isFatal = 1; | 
| 329 | 
< | 
    simError(); | 
| 330 | 
< | 
    return -1; | 
| 331 | 
< | 
  } | 
| 332 | 
< | 
 | 
| 333 | 
< | 
  if (!have_chi_tolerance) { | 
| 334 | 
< | 
    sprintf( painCave.errMsg, | 
| 335 | 
< | 
             "Setting chi tolerance to 1e-6 in NPT integrator\n"); | 
| 336 | 
< | 
    chiTolerance = 1e-6; | 
| 337 | 
< | 
    have_chi_tolerance = 1; | 
| 338 | 
< | 
    painCave.severity = OOPSE_INFO; | 
| 339 | 
< | 
    painCave.isFatal = 0; | 
| 340 | 
< | 
    simError(); | 
| 341 | 
< | 
  } | 
| 342 | 
< | 
 | 
| 343 | 
< | 
  if (!have_eta_tolerance) { | 
| 344 | 
< | 
    sprintf( painCave.errMsg, | 
| 345 | 
< | 
             "Setting eta tolerance to 1e-6 in NPT integrator"); | 
| 346 | 
< | 
    etaTolerance = 1e-6; | 
| 347 | 
< | 
    have_eta_tolerance = 1; | 
| 348 | 
< | 
    painCave.severity = OOPSE_INFO; | 
| 349 | 
< | 
    painCave.isFatal = 0; | 
| 350 | 
< | 
    simError(); | 
| 351 | 
< | 
  } | 
| 352 | 
< | 
 | 
| 353 | 
< | 
  // We need NkBT a lot, so just set it here: This is the RAW number | 
| 354 | 
< | 
  // of integrableObjects, so no subtraction or addition of constraints or | 
| 355 | 
< | 
  // orientational degrees of freedom: | 
| 356 | 
< | 
 | 
| 357 | 
< | 
  NkBT = (double)(info->getTotIntegrableObjects()) * kB * targetTemp; | 
| 358 | 
< | 
 | 
| 359 | 
< | 
  // fkBT is used because the thermostat operates on more degrees of freedom | 
| 360 | 
< | 
  // than the barostat (when there are particles with orientational degrees | 
| 361 | 
< | 
  // of freedom).   | 
| 362 | 
< | 
 | 
| 363 | 
< | 
  fkBT = (double)(info->getNDF()) * kB * targetTemp; | 
| 364 | 
< | 
 | 
| 365 | 
< | 
  tt2 = tauThermostat * tauThermostat; | 
| 366 | 
< | 
  tb2 = tauBarostat * tauBarostat; | 
| 367 | 
< | 
 | 
| 368 | 
< | 
  return 1; | 
| 348 | 
> | 
    void NPT::resetEta() { | 
| 349 | 
> | 
      Mat3x3d etaMat(0.0); | 
| 350 | 
> | 
      currentSnapshot_->setEta(etaMat);     | 
| 351 | 
> | 
    } | 
| 352 | 
> | 
     | 
| 353 | 
  | 
} |