| 6 | 
  | 
 * redistribute this software in source and binary code form, provided | 
| 7 | 
  | 
 * that the following conditions are met: | 
| 8 | 
  | 
 * | 
| 9 | 
< | 
 * 1. Acknowledgement of the program authors must be made in any | 
| 10 | 
< | 
 *    publication of scientific results based in part on use of the | 
| 11 | 
< | 
 *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | 
< | 
 *    the article in which the program was described (Matthew | 
| 13 | 
< | 
 *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | 
< | 
 *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | 
< | 
 *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | 
< | 
 *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | 
< | 
 * | 
| 18 | 
< | 
 * 2. Redistributions of source code must retain the above copyright | 
| 9 | 
> | 
 * 1. Redistributions of source code must retain the above copyright | 
| 10 | 
  | 
 *    notice, this list of conditions and the following disclaimer. | 
| 11 | 
  | 
 * | 
| 12 | 
< | 
 * 3. Redistributions in binary form must reproduce the above copyright | 
| 12 | 
> | 
 * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | 
  | 
 *    notice, this list of conditions and the following disclaimer in the | 
| 14 | 
  | 
 *    documentation and/or other materials provided with the | 
| 15 | 
  | 
 *    distribution. | 
| 28 | 
  | 
 * arising out of the use of or inability to use software, even if the | 
| 29 | 
  | 
 * University of Notre Dame has been advised of the possibility of | 
| 30 | 
  | 
 * such damages. | 
| 31 | 
+ | 
 * | 
| 32 | 
+ | 
 * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | 
+ | 
 * research, please cite the appropriate papers when you publish your | 
| 34 | 
+ | 
 * work.  Good starting points are: | 
| 35 | 
+ | 
 *                                                                       | 
| 36 | 
+ | 
 * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).              | 
| 37 | 
+ | 
 * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).           | 
| 38 | 
+ | 
 * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).           | 
| 39 | 
+ | 
 * [4]  Vardeman & Gezelter, in progress (2009).                         | 
| 40 | 
  | 
 */ | 
| 41 | 
  | 
  | 
| 42 | 
  | 
#include <math.h> | 
| 46 | 
  | 
#include "integrators/NPT.hpp" | 
| 47 | 
  | 
#include "math/SquareMatrix3.hpp" | 
| 48 | 
  | 
#include "primitives/Molecule.hpp" | 
| 49 | 
< | 
#include "utils/OOPSEConstant.hpp" | 
| 49 | 
> | 
#include "utils/PhysicalConstants.hpp" | 
| 50 | 
  | 
#include "utils/simError.h" | 
| 51 | 
  | 
 | 
| 52 | 
  | 
// Basic isotropic thermostating and barostating via the Melchionna | 
| 59 | 
  | 
// | 
| 60 | 
  | 
//    Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. | 
| 61 | 
  | 
 | 
| 62 | 
< | 
namespace oopse { | 
| 62 | 
> | 
namespace OpenMD { | 
| 63 | 
  | 
 | 
| 64 | 
  | 
  NPT::NPT(SimInfo* info) : | 
| 65 | 
  | 
    VelocityVerletIntegrator(info), chiTolerance(1e-6), etaTolerance(1e-6), maxIterNum_(4) { | 
| 76 | 
  | 
      if (!simParams->haveTargetTemp()) { | 
| 77 | 
  | 
        sprintf(painCave.errMsg, "You can't use the NVT integrator without a targetTemp!\n"); | 
| 78 | 
  | 
        painCave.isFatal = 1; | 
| 79 | 
< | 
        painCave.severity = OOPSE_ERROR; | 
| 79 | 
> | 
        painCave.severity = OPENMD_ERROR; | 
| 80 | 
  | 
        simError(); | 
| 81 | 
  | 
      } else { | 
| 82 | 
  | 
        targetTemp = simParams->getTargetTemp(); | 
| 85 | 
  | 
      // We must set tauThermostat | 
| 86 | 
  | 
      if (!simParams->haveTauThermostat()) { | 
| 87 | 
  | 
        sprintf(painCave.errMsg, "If you use the constant temperature\n" | 
| 88 | 
< | 
                "\tintegrator, you must set tauThermostat_.\n"); | 
| 88 | 
> | 
                "\tintegrator, you must set tauThermostat.\n"); | 
| 89 | 
  | 
 | 
| 90 | 
< | 
        painCave.severity = OOPSE_ERROR; | 
| 90 | 
> | 
        painCave.severity = OPENMD_ERROR; | 
| 91 | 
  | 
        painCave.isFatal = 1; | 
| 92 | 
  | 
        simError(); | 
| 93 | 
  | 
      } else { | 
| 107 | 
  | 
      if (!simParams->haveTauBarostat()) { | 
| 108 | 
  | 
        sprintf(painCave.errMsg, | 
| 109 | 
  | 
                "If you use the NPT integrator, you must set tauBarostat.\n"); | 
| 110 | 
< | 
        painCave.severity = OOPSE_ERROR; | 
| 110 | 
> | 
        painCave.severity = OPENMD_ERROR; | 
| 111 | 
  | 
        painCave.isFatal = 1; | 
| 112 | 
  | 
        simError(); | 
| 113 | 
  | 
      } else { | 
| 137 | 
  | 
    Molecule* mol; | 
| 138 | 
  | 
    StuntDouble* integrableObject; | 
| 139 | 
  | 
    Vector3d Tb, ji; | 
| 140 | 
< | 
    double mass; | 
| 140 | 
> | 
    RealType mass; | 
| 141 | 
  | 
    Vector3d vel; | 
| 142 | 
  | 
    Vector3d pos; | 
| 143 | 
  | 
    Vector3d frc; | 
| 150 | 
  | 
     | 
| 151 | 
  | 
    instaTemp =thermo.getTemperature(); | 
| 152 | 
  | 
    press = thermo.getPressureTensor(); | 
| 153 | 
< | 
    instaPress = OOPSEConstant::pressureConvert* (press(0, 0) + press(1, 1) + press(2, 2)) / 3.0; | 
| 153 | 
> | 
    instaPress = PhysicalConstants::pressureConvert* (press(0, 0) + press(1, 1) + press(2, 2)) / 3.0; | 
| 154 | 
  | 
    instaVol =thermo.getVolume(); | 
| 155 | 
  | 
 | 
| 156 | 
  | 
    Vector3d  COM = info_->getCom(); | 
| 171 | 
  | 
        getVelScaleA(sc, vel); | 
| 172 | 
  | 
 | 
| 173 | 
  | 
        // velocity half step  (use chi from previous step here): | 
| 174 | 
< | 
        //vel[j] += dt2 * ((frc[j] / mass) * OOPSEConstant::energyConvert - sc[j]); | 
| 175 | 
< | 
        vel += dt2*OOPSEConstant::energyConvert/mass* frc - dt2*sc; | 
| 174 | 
> | 
        //vel[j] += dt2 * ((frc[j] / mass) * PhysicalConstants::energyConvert - sc[j]); | 
| 175 | 
> | 
        vel += dt2*PhysicalConstants::energyConvert/mass* frc - dt2*sc; | 
| 176 | 
  | 
        integrableObject->setVel(vel); | 
| 177 | 
  | 
 | 
| 178 | 
  | 
        if (integrableObject->isDirectional()) { | 
| 185 | 
  | 
 | 
| 186 | 
  | 
          ji = integrableObject->getJ(); | 
| 187 | 
  | 
 | 
| 188 | 
< | 
          //ji[j] += dt2 * (Tb[j] * OOPSEConstant::energyConvert - ji[j]*chi); | 
| 189 | 
< | 
          ji += dt2*OOPSEConstant::energyConvert * Tb - dt2*chi* ji; | 
| 188 | 
> | 
          //ji[j] += dt2 * (Tb[j] * PhysicalConstants::energyConvert - ji[j]*chi); | 
| 189 | 
> | 
          ji += dt2*PhysicalConstants::energyConvert * Tb - dt2*chi* ji; | 
| 190 | 
  | 
                 | 
| 191 | 
  | 
          rotAlgo->rotate(integrableObject, ji, dt); | 
| 192 | 
  | 
 | 
| 256 | 
  | 
    Vector3d sc; | 
| 257 | 
  | 
    Vector3d vel; | 
| 258 | 
  | 
    Vector3d frc; | 
| 259 | 
< | 
    double mass; | 
| 259 | 
> | 
    RealType mass; | 
| 260 | 
  | 
 | 
| 261 | 
  | 
 | 
| 262 | 
  | 
    chi= currentSnapshot_->getChi(); | 
| 263 | 
  | 
    integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); | 
| 264 | 
< | 
    double oldChi  = chi; | 
| 265 | 
< | 
    double prevChi; | 
| 264 | 
> | 
    RealType oldChi  = chi; | 
| 265 | 
> | 
    RealType prevChi; | 
| 266 | 
  | 
 | 
| 267 | 
  | 
    loadEta(); | 
| 268 | 
  | 
     | 
| 306 | 
  | 
          getVelScaleB(sc, index); | 
| 307 | 
  | 
 | 
| 308 | 
  | 
          // velocity half step | 
| 309 | 
< | 
          //vel[j] = oldVel[3 * i + j] + dt2 *((frc[j] / mass) * OOPSEConstant::energyConvert - sc[j]); | 
| 310 | 
< | 
          vel = oldVel[index] + dt2*OOPSEConstant::energyConvert/mass* frc - dt2*sc; | 
| 309 | 
> | 
          //vel[j] = oldVel[3 * i + j] + dt2 *((frc[j] / mass) * PhysicalConstants::energyConvert - sc[j]); | 
| 310 | 
> | 
          vel = oldVel[index] + dt2*PhysicalConstants::energyConvert/mass* frc - dt2*sc; | 
| 311 | 
  | 
          integrableObject->setVel(vel); | 
| 312 | 
  | 
 | 
| 313 | 
  | 
          if (integrableObject->isDirectional()) { | 
| 314 | 
  | 
            // get and convert the torque to body frame | 
| 315 | 
  | 
            Tb = integrableObject->lab2Body(integrableObject->getTrq()); | 
| 316 | 
  | 
 | 
| 317 | 
< | 
            //ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * OOPSEConstant::energyConvert - oldJi[3*i+j]*chi); | 
| 318 | 
< | 
            ji = oldJi[index] + dt2*OOPSEConstant::energyConvert*Tb - dt2*chi*oldJi[index]; | 
| 317 | 
> | 
            //ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * PhysicalConstants::energyConvert - oldJi[3*i+j]*chi); | 
| 318 | 
> | 
            ji = oldJi[index] + dt2*PhysicalConstants::energyConvert*Tb - dt2*chi*oldJi[index]; | 
| 319 | 
  | 
            integrableObject->setJ(ji); | 
| 320 | 
  | 
          } | 
| 321 | 
  | 
 |