ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/integrators/NPT.cpp
(Generate patch)

Comparing trunk/src/integrators/NPT.cpp (file contents):
Revision 246 by gezelter, Wed Jan 12 22:41:40 2005 UTC vs.
Revision 2071 by gezelter, Sat Mar 7 21:41:51 2015 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   #include <math.h>
# Line 46 | Line 47
47   #include "integrators/NPT.hpp"
48   #include "math/SquareMatrix3.hpp"
49   #include "primitives/Molecule.hpp"
50 < #include "utils/OOPSEConstant.hpp"
50 > #include "utils/PhysicalConstants.hpp"
51   #include "utils/simError.h"
52  
53   // Basic isotropic thermostating and barostating via the Melchionna
# Line 59 | Line 60
60   //
61   //    Hoover, W. G., 1986, Phys. Rev. A, 34, 2499.
62  
63 < namespace oopse {
63 > namespace OpenMD {
64  
65 < NPT::NPT(SimInfo* info) :
66 <    VelocityVerletIntegrator(info), chiTolerance(1e-6), etaTolerance(1e-6), maxIterNum_(4) {
65 >  NPT::NPT(SimInfo* info) :
66 >    VelocityVerletIntegrator(info), etaTolerance(1e-6), chiTolerance(1e-6),
67 >    maxIterNum_(4) {
68  
69 <    Globals* simParams = info_->getSimParams();
69 >      Globals* simParams = info_->getSimParams();
70      
71 <    if (!simParams->getUseInitXSstate()) {
71 >      if (!simParams->getUseIntialExtendedSystemState()) {
72          Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
73 <        currSnapshot->setChi(0.0);
74 <        currSnapshot->setIntegralOfChiDt(0.0);
75 <        currSnapshot->setEta(Mat3x3d(0.0));
74 <    }
73 >        currSnapshot->setThermostat(make_pair(0.0, 0.0));
74 >        currSnapshot->setBarostat(Mat3x3d(0.0));
75 >      }
76      
77 <    if (!simParams->haveTargetTemp()) {
77 >      if (!simParams->haveTargetTemp()) {
78          sprintf(painCave.errMsg, "You can't use the NVT integrator without a targetTemp!\n");
79          painCave.isFatal = 1;
80 <        painCave.severity = OOPSE_ERROR;
80 >        painCave.severity = OPENMD_ERROR;
81          simError();
82 <    } else {
82 >      } else {
83          targetTemp = simParams->getTargetTemp();
84 <    }
84 >      }
85  
86 <    // We must set tauThermostat
87 <    if (!simParams->haveTauThermostat()) {
86 >      // We must set tauThermostat
87 >      if (!simParams->haveTauThermostat()) {
88          sprintf(painCave.errMsg, "If you use the constant temperature\n"
89 <                                     "\tintegrator, you must set tauThermostat_.\n");
89 >                "\tintegrator, you must set tauThermostat.\n");
90  
91 <        painCave.severity = OOPSE_ERROR;
91 >        painCave.severity = OPENMD_ERROR;
92          painCave.isFatal = 1;
93          simError();
94 <    } else {
94 >      } else {
95          tauThermostat = simParams->getTauThermostat();
96 <    }
96 >      }
97  
98 <    if (!simParams->haveTargetPressure()) {
98 >      if (!simParams->haveTargetPressure()) {
99          sprintf(painCave.errMsg, "NPT error: You can't use the NPT integrator\n"
100 <                                     "   without a targetPressure!\n");
100 >                "   without a targetPressure!\n");
101  
102          painCave.isFatal = 1;
103          simError();
104 <    } else {
104 >      } else {
105          targetPressure = simParams->getTargetPressure();
106 <    }
106 >      }
107      
108 <    if (!simParams->haveTauBarostat()) {
108 >      if (!simParams->haveTauBarostat()) {
109          sprintf(painCave.errMsg,
110                  "If you use the NPT integrator, you must set tauBarostat.\n");
111 <        painCave.severity = OOPSE_ERROR;
111 >        painCave.severity = OPENMD_ERROR;
112          painCave.isFatal = 1;
113          simError();
114 <    } else {
114 >      } else {
115          tauBarostat = simParams->getTauBarostat();
116 <    }
116 >      }
117      
118 <    tt2 = tauThermostat * tauThermostat;
119 <    tb2 = tauBarostat * tauBarostat;
118 >      tt2 = tauThermostat * tauThermostat;
119 >      tb2 = tauBarostat * tauBarostat;
120  
121 <    update();
122 < }
121 >      updateSizes();
122 >    }
123  
124 < NPT::~NPT() {
125 < }
124 >  NPT::~NPT() {
125 >  }
126  
127 < void NPT::doUpdate() {
127 >  void NPT::doUpdateSizes() {
128  
129      oldPos.resize(info_->getNIntegrableObjects());
130      oldVel.resize(info_->getNIntegrableObjects());
131      oldJi.resize(info_->getNIntegrableObjects());
132  
133 < }
133 >  }
134  
135 < void NPT::moveA() {
135 >  void NPT::moveA() {
136      SimInfo::MoleculeIterator i;
137      Molecule::IntegrableObjectIterator  j;
138      Molecule* mol;
139 <    StuntDouble* integrableObject;
139 >    StuntDouble* sd;
140      Vector3d Tb, ji;
141 <    double mass;
141 >    RealType mass;
142      Vector3d vel;
143      Vector3d pos;
144      Vector3d frc;
145      Vector3d sc;
146      int index;
147  
148 <    chi= currentSnapshot_->getChi();
148 <    integralOfChidt = currentSnapshot_->getIntegralOfChiDt();
148 >    thermostat = snap->getThermostat();
149      loadEta();
150      
151      instaTemp =thermo.getTemperature();
152      press = thermo.getPressureTensor();
153 <    instaPress = OOPSEConstant::pressureConvert* (press(0, 0) + press(1, 1) + press(2, 2)) / 3.0;
153 >    instaPress = PhysicalConstants::pressureConvert* (press(0, 0) + press(1, 1) + press(2, 2)) / 3.0;
154      instaVol =thermo.getVolume();
155  
156 <    Vector3d  COM = info_->getCom();
156 >    Vector3d  COM = thermo.getCom();
157  
158      //evolve velocity half step
159  
160      calcVelScale();
161  
162 <    for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
163 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
164 <               integrableObject = mol->nextIntegrableObject(j)) {
162 >    for (mol = info_->beginMolecule(i); mol != NULL;
163 >         mol = info_->nextMolecule(i)) {
164 >
165 >      for (sd = mol->beginIntegrableObject(j); sd != NULL;
166 >           sd = mol->nextIntegrableObject(j)) {
167                  
168 <            vel = integrableObject->getVel();
169 <            frc = integrableObject->getFrc();
168 >        vel = sd->getVel();
169 >        frc = sd->getFrc();
170  
171 <            mass = integrableObject->getMass();
171 >        mass = sd->getMass();
172  
173 <            getVelScaleA(sc, vel);
173 >        getVelScaleA(sc, vel);
174  
175 <            // velocity half step  (use chi from previous step here):
174 <            //vel[j] += dt2 * ((frc[j] / mass) * OOPSEConstant::energyConvert - sc[j]);
175 <            vel += dt2*OOPSEConstant::energyConvert/mass* frc - dt2*sc;
176 <            integrableObject->setVel(vel);
175 >        // velocity half step  (use chi from previous step here):
176  
177 <            if (integrableObject->isDirectional()) {
177 >        vel += dt2*PhysicalConstants::energyConvert/mass* frc - dt2*sc;
178 >        sd->setVel(vel);
179  
180 <                // get and convert the torque to body frame
180 >        if (sd->isDirectional()) {
181  
182 <                Tb = integrableObject->lab2Body(integrableObject->getTrq());
182 >          // get and convert the torque to body frame
183  
184 <                // get the angular momentum, and propagate a half step
184 >          Tb = sd->lab2Body(sd->getTrq());
185  
186 <                ji = integrableObject->getJ();
186 >          // get the angular momentum, and propagate a half step
187  
188 <                //ji[j] += dt2 * (Tb[j] * OOPSEConstant::energyConvert - ji[j]*chi);
189 <                ji += dt2*OOPSEConstant::energyConvert * Tb - dt2*chi* ji;
188 >          ji = sd->getJ();
189 >
190 >          ji += dt2*PhysicalConstants::energyConvert * Tb
191 >            - dt2*thermostat.first* ji;
192                  
193 <                rotAlgo->rotate(integrableObject, ji, dt);
193 >          rotAlgo_->rotate(sd, ji, dt);
194  
195 <                integrableObject->setJ(ji);
196 <            }
195 >          sd->setJ(ji);
196 >        }
197              
198 <        }
198 >      }
199      }
200      // evolve chi and eta  half step
201  
202 <    chi += dt2 * (instaTemp / targetTemp - 1.0) / tt2;
202 >    thermostat.first += dt2 * (instaTemp / targetTemp - 1.0) / tt2;
203      
204      evolveEtaA();
205  
206      //calculate the integral of chidt
207 <    integralOfChidt += dt2 * chi;
207 >    thermostat.second += dt2 * thermostat.first;
208      
209 +    flucQ_->moveA();
210 +
211 +
212      index = 0;
213 <    for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
214 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
215 <               integrableObject = mol->nextIntegrableObject(j)) {
216 <            oldPos[index++] = integrableObject->getPos();            
217 <        }
213 >    for (mol = info_->beginMolecule(i); mol != NULL;
214 >         mol = info_->nextMolecule(i)) {
215 >
216 >      for (sd = mol->beginIntegrableObject(j); sd != NULL;
217 >           sd = mol->nextIntegrableObject(j)) {
218 >
219 >        oldPos[index++] = sd->getPos();            
220 >
221 >      }
222      }
223      
224      //the first estimation of r(t+dt) is equal to  r(t)
225  
226      for(int k = 0; k < maxIterNum_; k++) {
227 <        index = 0;
228 <        for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
229 <            for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
221 <                   integrableObject = mol->nextIntegrableObject(j)) {
227 >      index = 0;
228 >      for (mol = info_->beginMolecule(i); mol != NULL;
229 >           mol = info_->nextMolecule(i)) {
230  
231 <                vel = integrableObject->getVel();
232 <                pos = integrableObject->getPos();
231 >        for (sd = mol->beginIntegrableObject(j); sd != NULL;
232 >             sd = mol->nextIntegrableObject(j)) {
233  
234 <                this->getPosScale(pos, COM, index, sc);
234 >          vel = sd->getVel();
235 >          pos = sd->getPos();
236  
237 <                pos = oldPos[index] + dt * (vel + sc);
229 <                integrableObject->setPos(pos);    
237 >          this->getPosScale(pos, COM, index, sc);
238  
239 <                ++index;
240 <           }
233 <        }
239 >          pos = oldPos[index] + dt * (vel + sc);
240 >          sd->setPos(pos);    
241  
242 <        rattle->constraintA();
242 >          ++index;
243 >        }
244 >      }
245 >
246 >      rattle_->constraintA();
247      }
248  
249      // Scale the box after all the positions have been moved:
250  
251      this->scaleSimBox();
252  
253 <    currentSnapshot_->setChi(chi);
243 <    currentSnapshot_->setIntegralOfChiDt(integralOfChidt);
253 >    snap->setThermostat(thermostat);
254  
255      saveEta();
256 < }
256 >  }
257  
258 < void NPT::moveB(void) {
258 >  void NPT::moveB(void) {
259      SimInfo::MoleculeIterator i;
260      Molecule::IntegrableObjectIterator  j;
261      Molecule* mol;
262 <    StuntDouble* integrableObject;
262 >    StuntDouble* sd;
263      int index;
264      Vector3d Tb;
265      Vector3d ji;
266      Vector3d sc;
267      Vector3d vel;
268      Vector3d frc;
269 <    double mass;
269 >    RealType mass;
270  
271 +    thermostat = snap->getThermostat();
272 +    RealType oldChi  = thermostat.first;
273 +    RealType prevChi;
274  
262    chi= currentSnapshot_->getChi();
263    integralOfChidt = currentSnapshot_->getIntegralOfChiDt();
264    double oldChi  = chi;
265    double prevChi;
266
275      loadEta();
276      
277      //save velocity and angular momentum
278      index = 0;
279 <    for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
280 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
281 <               integrableObject = mol->nextIntegrableObject(j)) {
279 >    for (mol = info_->beginMolecule(i); mol != NULL;
280 >         mol = info_->nextMolecule(i)) {
281 >
282 >      for (sd = mol->beginIntegrableObject(j); sd != NULL;
283 >           sd = mol->nextIntegrableObject(j)) {
284                  
285 <            oldVel[index] = integrableObject->getVel();
286 <            oldJi[index] = integrableObject->getJ();
287 <            ++index;
288 <        }
285 >        oldVel[index] = sd->getVel();
286 >
287 >        if (sd->isDirectional())
288 >           oldJi[index] = sd->getJ();
289 >
290 >        ++index;
291 >      }
292      }
293  
294      // do the iteration:
295      instaVol =thermo.getVolume();
296  
297      for(int k = 0; k < maxIterNum_; k++) {
298 <        instaTemp =thermo.getTemperature();
299 <        instaPress =thermo.getPressure();
298 >      instaTemp =thermo.getTemperature();
299 >      instaPress =thermo.getPressure();
300  
301 <        // evolve chi another half step using the temperature at t + dt/2
302 <        prevChi = chi;
303 <        chi = oldChi + dt2 * (instaTemp / targetTemp - 1.0) / tt2;
301 >      // evolve chi another half step using the temperature at t + dt/2
302 >      prevChi = thermostat.first;
303 >      thermostat.first = oldChi + dt2 * (instaTemp / targetTemp - 1.0) / tt2;
304  
305 <        //evolve eta
306 <        this->evolveEtaB();
307 <        this->calcVelScale();
305 >      //evolve eta
306 >      this->evolveEtaB();
307 >      this->calcVelScale();
308  
309 <        index = 0;
310 <        for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
311 <            for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
299 <                   integrableObject = mol->nextIntegrableObject(j)) {            
309 >      index = 0;
310 >      for (mol = info_->beginMolecule(i); mol != NULL;
311 >           mol = info_->nextMolecule(i)) {
312  
313 <                frc = integrableObject->getFrc();
314 <                vel = integrableObject->getVel();
313 >        for (sd = mol->beginIntegrableObject(j); sd != NULL;
314 >             sd = mol->nextIntegrableObject(j)) {            
315  
316 <                mass = integrableObject->getMass();
316 >          frc = sd->getFrc();
317 >          mass = sd->getMass();
318  
319 <                getVelScaleB(sc, index);
319 >          getVelScaleB(sc, index);
320  
321 <                // velocity half step
322 <                //vel[j] = oldVel[3 * i + j] + dt2 *((frc[j] / mass) * OOPSEConstant::energyConvert - sc[j]);
323 <                vel = oldVel[index] + dt2*OOPSEConstant::energyConvert/mass* frc - dt2*sc;
324 <                integrableObject->setVel(vel);
321 >          // velocity half step
322 >          vel = oldVel[index]
323 >            + dt2*PhysicalConstants::energyConvert/mass* frc
324 >            - dt2*sc;
325  
326 <                if (integrableObject->isDirectional()) {
314 <                    // get and convert the torque to body frame
315 <                    Tb = integrableObject->lab2Body(integrableObject->getTrq());
326 >          sd->setVel(vel);
327  
328 <                    //ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * OOPSEConstant::energyConvert - oldJi[3*i+j]*chi);
329 <                    ji = oldJi[index] + dt2*OOPSEConstant::energyConvert*Tb - dt2*chi*oldJi[index];
330 <                    integrableObject->setJ(ji);
320 <                }
328 >          if (sd->isDirectional()) {
329 >            // get and convert the torque to body frame
330 >            Tb = sd->lab2Body(sd->getTrq());
331  
332 <                ++index;
333 <            }
334 <        }
332 >            ji = oldJi[index]
333 >              + dt2*PhysicalConstants::energyConvert*Tb
334 >              - dt2*thermostat.first*oldJi[index];
335 >
336 >            sd->setJ(ji);
337 >          }
338 >
339 >          ++index;
340 >        }
341 >      }
342          
343 <        rattle->constraintB();
343 >      rattle_->constraintB();
344  
345 <        if ((fabs(prevChi - chi) <= chiTolerance) && this->etaConverged())
346 <            break;
345 >      if ((fabs(prevChi - thermostat.first) <= chiTolerance) &&
346 >          this->etaConverged())
347 >        break;
348      }
349  
350      //calculate integral of chidt
351 <    integralOfChidt += dt2 * chi;
351 >    thermostat.second += dt2 * thermostat.first;
352  
353 <    currentSnapshot_->setChi(chi);
336 <    currentSnapshot_->setIntegralOfChiDt(integralOfChidt);    
353 >    snap->setThermostat(thermostat);
354  
355 +    flucQ_->moveB();
356      saveEta();
357 < }
357 >  }
358  
359 +  void NPT::resetIntegrator(){
360 +    snap->setThermostat(make_pair(0.0, 0.0));
361 +    resetEta();
362 +  }
363 +
364 +  void NPT::resetEta() {
365 +    Mat3x3d etaMat(0.0);
366 +    snap->setBarostat(etaMat);    
367 +  }
368   }

Comparing trunk/src/integrators/NPT.cpp (property svn:keywords):
Revision 246 by gezelter, Wed Jan 12 22:41:40 2005 UTC vs.
Revision 2071 by gezelter, Sat Mar 7 21:41:51 2015 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines