| 1 | /* | 
| 2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Redistributions of source code must retain the above copyright | 
| 10 | *    notice, this list of conditions and the following disclaimer. | 
| 11 | * | 
| 12 | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | *    notice, this list of conditions and the following disclaimer in the | 
| 14 | *    documentation and/or other materials provided with the | 
| 15 | *    distribution. | 
| 16 | * | 
| 17 | * This software is provided "AS IS," without a warranty of any | 
| 18 | * kind. All express or implied conditions, representations and | 
| 19 | * warranties, including any implied warranty of merchantability, | 
| 20 | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 | * be liable for any damages suffered by licensee as a result of | 
| 23 | * using, modifying or distributing the software or its | 
| 24 | * derivatives. In no event will the University of Notre Dame or its | 
| 25 | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 | * direct, indirect, special, consequential, incidental or punitive | 
| 27 | * damages, however caused and regardless of the theory of liability, | 
| 28 | * arising out of the use of or inability to use software, even if the | 
| 29 | * University of Notre Dame has been advised of the possibility of | 
| 30 | * such damages. | 
| 31 | * | 
| 32 | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | * research, please cite the appropriate papers when you publish your | 
| 34 | * work.  Good starting points are: | 
| 35 | * | 
| 36 | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). | 
| 39 | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | */ | 
| 42 |  | 
| 43 | #include <math.h> | 
| 44 |  | 
| 45 | #include "brains/SimInfo.hpp" | 
| 46 | #include "brains/Thermo.hpp" | 
| 47 | #include "integrators/NPT.hpp" | 
| 48 | #include "math/SquareMatrix3.hpp" | 
| 49 | #include "primitives/Molecule.hpp" | 
| 50 | #include "utils/PhysicalConstants.hpp" | 
| 51 | #include "utils/simError.h" | 
| 52 |  | 
| 53 | // Basic isotropic thermostating and barostating via the Melchionna | 
| 54 | // modification of the Hoover algorithm: | 
| 55 | // | 
| 56 | //    Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, | 
| 57 | //       Molec. Phys., 78, 533. | 
| 58 | // | 
| 59 | //           and | 
| 60 | // | 
| 61 | //    Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. | 
| 62 |  | 
| 63 | namespace OpenMD { | 
| 64 |  | 
| 65 | NPT::NPT(SimInfo* info) : | 
| 66 | VelocityVerletIntegrator(info), etaTolerance(1e-6), chiTolerance(1e-6), | 
| 67 | maxIterNum_(4) { | 
| 68 |  | 
| 69 | Globals* simParams = info_->getSimParams(); | 
| 70 |  | 
| 71 | if (!simParams->getUseIntialExtendedSystemState()) { | 
| 72 | Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 73 | currSnapshot->setThermostat(make_pair(0.0, 0.0)); | 
| 74 | currSnapshot->setBarostat(Mat3x3d(0.0)); | 
| 75 | } | 
| 76 |  | 
| 77 | if (!simParams->haveTargetTemp()) { | 
| 78 | sprintf(painCave.errMsg, "You can't use the NVT integrator without a targetTemp!\n"); | 
| 79 | painCave.isFatal = 1; | 
| 80 | painCave.severity = OPENMD_ERROR; | 
| 81 | simError(); | 
| 82 | } else { | 
| 83 | targetTemp = simParams->getTargetTemp(); | 
| 84 | } | 
| 85 |  | 
| 86 | // We must set tauThermostat | 
| 87 | if (!simParams->haveTauThermostat()) { | 
| 88 | sprintf(painCave.errMsg, "If you use the constant temperature\n" | 
| 89 | "\tintegrator, you must set tauThermostat.\n"); | 
| 90 |  | 
| 91 | painCave.severity = OPENMD_ERROR; | 
| 92 | painCave.isFatal = 1; | 
| 93 | simError(); | 
| 94 | } else { | 
| 95 | tauThermostat = simParams->getTauThermostat(); | 
| 96 | } | 
| 97 |  | 
| 98 | if (!simParams->haveTargetPressure()) { | 
| 99 | sprintf(painCave.errMsg, "NPT error: You can't use the NPT integrator\n" | 
| 100 | "   without a targetPressure!\n"); | 
| 101 |  | 
| 102 | painCave.isFatal = 1; | 
| 103 | simError(); | 
| 104 | } else { | 
| 105 | targetPressure = simParams->getTargetPressure(); | 
| 106 | } | 
| 107 |  | 
| 108 | if (!simParams->haveTauBarostat()) { | 
| 109 | sprintf(painCave.errMsg, | 
| 110 | "If you use the NPT integrator, you must set tauBarostat.\n"); | 
| 111 | painCave.severity = OPENMD_ERROR; | 
| 112 | painCave.isFatal = 1; | 
| 113 | simError(); | 
| 114 | } else { | 
| 115 | tauBarostat = simParams->getTauBarostat(); | 
| 116 | } | 
| 117 |  | 
| 118 | tt2 = tauThermostat * tauThermostat; | 
| 119 | tb2 = tauBarostat * tauBarostat; | 
| 120 |  | 
| 121 | updateSizes(); | 
| 122 | } | 
| 123 |  | 
| 124 | NPT::~NPT() { | 
| 125 | } | 
| 126 |  | 
| 127 | void NPT::doUpdateSizes() { | 
| 128 |  | 
| 129 | oldPos.resize(info_->getNIntegrableObjects()); | 
| 130 | oldVel.resize(info_->getNIntegrableObjects()); | 
| 131 | oldJi.resize(info_->getNIntegrableObjects()); | 
| 132 |  | 
| 133 | } | 
| 134 |  | 
| 135 | void NPT::moveA() { | 
| 136 | SimInfo::MoleculeIterator i; | 
| 137 | Molecule::IntegrableObjectIterator  j; | 
| 138 | Molecule* mol; | 
| 139 | StuntDouble* sd; | 
| 140 | Vector3d Tb, ji; | 
| 141 | RealType mass; | 
| 142 | Vector3d vel; | 
| 143 | Vector3d pos; | 
| 144 | Vector3d frc; | 
| 145 | Vector3d sc; | 
| 146 | int index; | 
| 147 |  | 
| 148 | thermostat = snap->getThermostat(); | 
| 149 | loadEta(); | 
| 150 |  | 
| 151 | instaTemp =thermo.getTemperature(); | 
| 152 | press = thermo.getPressureTensor(); | 
| 153 | instaPress = PhysicalConstants::pressureConvert* (press(0, 0) + press(1, 1) + press(2, 2)) / 3.0; | 
| 154 | instaVol =thermo.getVolume(); | 
| 155 |  | 
| 156 | Vector3d  COM = thermo.getCom(); | 
| 157 |  | 
| 158 | //evolve velocity half step | 
| 159 |  | 
| 160 | calcVelScale(); | 
| 161 |  | 
| 162 | for (mol = info_->beginMolecule(i); mol != NULL; | 
| 163 | mol = info_->nextMolecule(i)) { | 
| 164 |  | 
| 165 | for (sd = mol->beginIntegrableObject(j); sd != NULL; | 
| 166 | sd = mol->nextIntegrableObject(j)) { | 
| 167 |  | 
| 168 | vel = sd->getVel(); | 
| 169 | frc = sd->getFrc(); | 
| 170 |  | 
| 171 | mass = sd->getMass(); | 
| 172 |  | 
| 173 | getVelScaleA(sc, vel); | 
| 174 |  | 
| 175 | // velocity half step  (use chi from previous step here): | 
| 176 |  | 
| 177 | vel += dt2*PhysicalConstants::energyConvert/mass* frc - dt2*sc; | 
| 178 | sd->setVel(vel); | 
| 179 |  | 
| 180 | if (sd->isDirectional()) { | 
| 181 |  | 
| 182 | // get and convert the torque to body frame | 
| 183 |  | 
| 184 | Tb = sd->lab2Body(sd->getTrq()); | 
| 185 |  | 
| 186 | // get the angular momentum, and propagate a half step | 
| 187 |  | 
| 188 | ji = sd->getJ(); | 
| 189 |  | 
| 190 | ji += dt2*PhysicalConstants::energyConvert * Tb | 
| 191 | - dt2*thermostat.first* ji; | 
| 192 |  | 
| 193 | rotAlgo_->rotate(sd, ji, dt); | 
| 194 |  | 
| 195 | sd->setJ(ji); | 
| 196 | } | 
| 197 |  | 
| 198 | } | 
| 199 | } | 
| 200 | // evolve chi and eta  half step | 
| 201 |  | 
| 202 | thermostat.first += dt2 * (instaTemp / targetTemp - 1.0) / tt2; | 
| 203 |  | 
| 204 | evolveEtaA(); | 
| 205 |  | 
| 206 | //calculate the integral of chidt | 
| 207 | thermostat.second += dt2 * thermostat.first; | 
| 208 |  | 
| 209 | flucQ_->moveA(); | 
| 210 |  | 
| 211 |  | 
| 212 | index = 0; | 
| 213 | for (mol = info_->beginMolecule(i); mol != NULL; | 
| 214 | mol = info_->nextMolecule(i)) { | 
| 215 |  | 
| 216 | for (sd = mol->beginIntegrableObject(j); sd != NULL; | 
| 217 | sd = mol->nextIntegrableObject(j)) { | 
| 218 |  | 
| 219 | oldPos[index++] = sd->getPos(); | 
| 220 |  | 
| 221 | } | 
| 222 | } | 
| 223 |  | 
| 224 | //the first estimation of r(t+dt) is equal to  r(t) | 
| 225 |  | 
| 226 | for(int k = 0; k < maxIterNum_; k++) { | 
| 227 | index = 0; | 
| 228 | for (mol = info_->beginMolecule(i); mol != NULL; | 
| 229 | mol = info_->nextMolecule(i)) { | 
| 230 |  | 
| 231 | for (sd = mol->beginIntegrableObject(j); sd != NULL; | 
| 232 | sd = mol->nextIntegrableObject(j)) { | 
| 233 |  | 
| 234 | vel = sd->getVel(); | 
| 235 | pos = sd->getPos(); | 
| 236 |  | 
| 237 | this->getPosScale(pos, COM, index, sc); | 
| 238 |  | 
| 239 | pos = oldPos[index] + dt * (vel + sc); | 
| 240 | sd->setPos(pos); | 
| 241 |  | 
| 242 | ++index; | 
| 243 | } | 
| 244 | } | 
| 245 |  | 
| 246 | rattle_->constraintA(); | 
| 247 | } | 
| 248 |  | 
| 249 | // Scale the box after all the positions have been moved: | 
| 250 |  | 
| 251 | this->scaleSimBox(); | 
| 252 |  | 
| 253 | snap->setThermostat(thermostat); | 
| 254 |  | 
| 255 | saveEta(); | 
| 256 | } | 
| 257 |  | 
| 258 | void NPT::moveB(void) { | 
| 259 | SimInfo::MoleculeIterator i; | 
| 260 | Molecule::IntegrableObjectIterator  j; | 
| 261 | Molecule* mol; | 
| 262 | StuntDouble* sd; | 
| 263 | int index; | 
| 264 | Vector3d Tb; | 
| 265 | Vector3d ji; | 
| 266 | Vector3d sc; | 
| 267 | Vector3d vel; | 
| 268 | Vector3d frc; | 
| 269 | RealType mass; | 
| 270 |  | 
| 271 | thermostat = snap->getThermostat(); | 
| 272 | RealType oldChi  = thermostat.first; | 
| 273 | RealType prevChi; | 
| 274 |  | 
| 275 | loadEta(); | 
| 276 |  | 
| 277 | //save velocity and angular momentum | 
| 278 | index = 0; | 
| 279 | for (mol = info_->beginMolecule(i); mol != NULL; | 
| 280 | mol = info_->nextMolecule(i)) { | 
| 281 |  | 
| 282 | for (sd = mol->beginIntegrableObject(j); sd != NULL; | 
| 283 | sd = mol->nextIntegrableObject(j)) { | 
| 284 |  | 
| 285 | oldVel[index] = sd->getVel(); | 
| 286 |  | 
| 287 | if (sd->isDirectional()) | 
| 288 | oldJi[index] = sd->getJ(); | 
| 289 |  | 
| 290 | ++index; | 
| 291 | } | 
| 292 | } | 
| 293 |  | 
| 294 | // do the iteration: | 
| 295 | instaVol =thermo.getVolume(); | 
| 296 |  | 
| 297 | for(int k = 0; k < maxIterNum_; k++) { | 
| 298 | instaTemp =thermo.getTemperature(); | 
| 299 | instaPress =thermo.getPressure(); | 
| 300 |  | 
| 301 | // evolve chi another half step using the temperature at t + dt/2 | 
| 302 | prevChi = thermostat.first; | 
| 303 | thermostat.first = oldChi + dt2 * (instaTemp / targetTemp - 1.0) / tt2; | 
| 304 |  | 
| 305 | //evolve eta | 
| 306 | this->evolveEtaB(); | 
| 307 | this->calcVelScale(); | 
| 308 |  | 
| 309 | index = 0; | 
| 310 | for (mol = info_->beginMolecule(i); mol != NULL; | 
| 311 | mol = info_->nextMolecule(i)) { | 
| 312 |  | 
| 313 | for (sd = mol->beginIntegrableObject(j); sd != NULL; | 
| 314 | sd = mol->nextIntegrableObject(j)) { | 
| 315 |  | 
| 316 | frc = sd->getFrc(); | 
| 317 | mass = sd->getMass(); | 
| 318 |  | 
| 319 | getVelScaleB(sc, index); | 
| 320 |  | 
| 321 | // velocity half step | 
| 322 | vel = oldVel[index] | 
| 323 | + dt2*PhysicalConstants::energyConvert/mass* frc | 
| 324 | - dt2*sc; | 
| 325 |  | 
| 326 | sd->setVel(vel); | 
| 327 |  | 
| 328 | if (sd->isDirectional()) { | 
| 329 | // get and convert the torque to body frame | 
| 330 | Tb = sd->lab2Body(sd->getTrq()); | 
| 331 |  | 
| 332 | ji = oldJi[index] | 
| 333 | + dt2*PhysicalConstants::energyConvert*Tb | 
| 334 | - dt2*thermostat.first*oldJi[index]; | 
| 335 |  | 
| 336 | sd->setJ(ji); | 
| 337 | } | 
| 338 |  | 
| 339 | ++index; | 
| 340 | } | 
| 341 | } | 
| 342 |  | 
| 343 | rattle_->constraintB(); | 
| 344 |  | 
| 345 | if ((fabs(prevChi - thermostat.first) <= chiTolerance) && | 
| 346 | this->etaConverged()) | 
| 347 | break; | 
| 348 | } | 
| 349 |  | 
| 350 | //calculate integral of chidt | 
| 351 | thermostat.second += dt2 * thermostat.first; | 
| 352 |  | 
| 353 | snap->setThermostat(thermostat); | 
| 354 |  | 
| 355 | flucQ_->moveB(); | 
| 356 | saveEta(); | 
| 357 | } | 
| 358 |  | 
| 359 | void NPT::resetIntegrator(){ | 
| 360 | snap->setThermostat(make_pair(0.0, 0.0)); | 
| 361 | resetEta(); | 
| 362 | } | 
| 363 |  | 
| 364 | void NPT::resetEta() { | 
| 365 | Mat3x3d etaMat(0.0); | 
| 366 | snap->setBarostat(etaMat); | 
| 367 | } | 
| 368 | } |