| 1 | + | /* | 
| 2 | + | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | + | * | 
| 4 | + | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | + | * non-exclusive, royalty free, license to use, modify and | 
| 6 | + | * redistribute this software in source and binary code form, provided | 
| 7 | + | * that the following conditions are met: | 
| 8 | + | * | 
| 9 | + | * 1. Acknowledgement of the program authors must be made in any | 
| 10 | + | *    publication of scientific results based in part on use of the | 
| 11 | + | *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | + | *    the article in which the program was described (Matthew | 
| 13 | + | *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | + | *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | + | *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | + | *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | + | * | 
| 18 | + | * 2. Redistributions of source code must retain the above copyright | 
| 19 | + | *    notice, this list of conditions and the following disclaimer. | 
| 20 | + | * | 
| 21 | + | * 3. Redistributions in binary form must reproduce the above copyright | 
| 22 | + | *    notice, this list of conditions and the following disclaimer in the | 
| 23 | + | *    documentation and/or other materials provided with the | 
| 24 | + | *    distribution. | 
| 25 | + | * | 
| 26 | + | * This software is provided "AS IS," without a warranty of any | 
| 27 | + | * kind. All express or implied conditions, representations and | 
| 28 | + | * warranties, including any implied warranty of merchantability, | 
| 29 | + | * fitness for a particular purpose or non-infringement, are hereby | 
| 30 | + | * excluded.  The University of Notre Dame and its licensors shall not | 
| 31 | + | * be liable for any damages suffered by licensee as a result of | 
| 32 | + | * using, modifying or distributing the software or its | 
| 33 | + | * derivatives. In no event will the University of Notre Dame or its | 
| 34 | + | * licensors be liable for any lost revenue, profit or data, or for | 
| 35 | + | * direct, indirect, special, consequential, incidental or punitive | 
| 36 | + | * damages, however caused and regardless of the theory of liability, | 
| 37 | + | * arising out of the use of or inability to use software, even if the | 
| 38 | + | * University of Notre Dame has been advised of the possibility of | 
| 39 | + | * such damages. | 
| 40 | + | */ | 
| 41 | + |  | 
| 42 |  | #include <math.h> | 
| 43 |  |  | 
| 3 | – | #include "primitives/Atom.hpp" | 
| 4 | – | #include "primitives/SRI.hpp" | 
| 5 | – | #include "primitives/AbstractClasses.hpp" | 
| 44 |  | #include "brains/SimInfo.hpp" | 
| 7 | – | #include "UseTheForce/ForceFields.hpp" | 
| 45 |  | #include "brains/Thermo.hpp" | 
| 46 | < | #include "io/ReadWrite.hpp" | 
| 47 | < | #include "integrators/Integrator.hpp" | 
| 46 | > | #include "integrators/NPT.hpp" | 
| 47 | > | #include "math/SquareMatrix3.hpp" | 
| 48 | > | #include "primitives/Molecule.hpp" | 
| 49 | > | #include "utils/OOPSEConstant.hpp" | 
| 50 |  | #include "utils/simError.h" | 
| 51 |  |  | 
| 13 | – | #ifdef IS_MPI | 
| 14 | – | #include "brains/mpiSimulation.hpp" | 
| 15 | – | #endif | 
| 16 | – |  | 
| 17 | – |  | 
| 52 |  | // Basic isotropic thermostating and barostating via the Melchionna | 
| 53 |  | // modification of the Hoover algorithm: | 
| 54 |  | // | 
| 59 |  | // | 
| 60 |  | //    Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. | 
| 61 |  |  | 
| 62 | < | template<typename T> NPT<T>::NPT ( SimInfo *theInfo, ForceFields* the_ff): | 
| 29 | < | T( theInfo, the_ff ) | 
| 30 | < | { | 
| 31 | < | GenericData* data; | 
| 32 | < | DoubleGenericData * chiValue; | 
| 33 | < | DoubleGenericData * integralOfChidtValue; | 
| 62 | > | namespace oopse { | 
| 63 |  |  | 
| 64 | < | chiValue = NULL; | 
| 65 | < | integralOfChidtValue = NULL; | 
| 64 | > | NPT::NPT(SimInfo* info) : | 
| 65 | > | VelocityVerletIntegrator(info), chiTolerance(1e-6), etaTolerance(1e-6), maxIterNum_(4) { | 
| 66 |  |  | 
| 67 | < | chi = 0.0; | 
| 68 | < | integralOfChidt = 0.0; | 
| 69 | < | have_tau_thermostat = 0; | 
| 70 | < | have_tau_barostat = 0; | 
| 71 | < | have_target_temp = 0; | 
| 72 | < | have_target_pressure = 0; | 
| 73 | < | have_chi_tolerance = 0; | 
| 74 | < | have_eta_tolerance = 0; | 
| 75 | < | have_pos_iter_tolerance = 0; | 
| 67 | > | Globals* simParams = info_->getSimParams(); | 
| 68 | > |  | 
| 69 | > | if (!simParams->getUseInitXSstate()) { | 
| 70 | > | Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 71 | > | currSnapshot->setChi(0.0); | 
| 72 | > | currSnapshot->setIntegralOfChiDt(0.0); | 
| 73 | > | currSnapshot->setEta(Mat3x3d(0.0)); | 
| 74 | > | } | 
| 75 | > |  | 
| 76 | > | if (!simParams->haveTargetTemp()) { | 
| 77 | > | sprintf(painCave.errMsg, "You can't use the NVT integrator without a targetTemp!\n"); | 
| 78 | > | painCave.isFatal = 1; | 
| 79 | > | painCave.severity = OOPSE_ERROR; | 
| 80 | > | simError(); | 
| 81 | > | } else { | 
| 82 | > | targetTemp = simParams->getTargetTemp(); | 
| 83 | > | } | 
| 84 |  |  | 
| 85 | < | // retrieve chi and integralOfChidt from simInfo | 
| 86 | < | data = info->getProperty(CHIVALUE_ID); | 
| 87 | < | if(data){ | 
| 88 | < | chiValue = dynamic_cast<DoubleGenericData*>(data); | 
| 52 | < | } | 
| 85 | > | // We must set tauThermostat | 
| 86 | > | if (!simParams->haveTauThermostat()) { | 
| 87 | > | sprintf(painCave.errMsg, "If you use the constant temperature\n" | 
| 88 | > | "\tintegrator, you must set tauThermostat_.\n"); | 
| 89 |  |  | 
| 90 | < | data = info->getProperty(INTEGRALOFCHIDT_ID); | 
| 91 | < | if(data){ | 
| 92 | < | integralOfChidtValue = dynamic_cast<DoubleGenericData*>(data); | 
| 93 | < | } | 
| 90 | > | painCave.severity = OOPSE_ERROR; | 
| 91 | > | painCave.isFatal = 1; | 
| 92 | > | simError(); | 
| 93 | > | } else { | 
| 94 | > | tauThermostat = simParams->getTauThermostat(); | 
| 95 | > | } | 
| 96 |  |  | 
| 97 | < | // chi and integralOfChidt should appear by pair | 
| 98 | < | if(chiValue && integralOfChidtValue){ | 
| 99 | < | chi = chiValue->getData(); | 
| 62 | < | integralOfChidt = integralOfChidtValue->getData(); | 
| 63 | < | } | 
| 97 | > | if (!simParams->haveTargetPressure()) { | 
| 98 | > | sprintf(painCave.errMsg, "NPT error: You can't use the NPT integrator\n" | 
| 99 | > | "   without a targetPressure!\n"); | 
| 100 |  |  | 
| 101 | < | oldPos = new double[3*integrableObjects.size()]; | 
| 102 | < | oldVel = new double[3*integrableObjects.size()]; | 
| 103 | < | oldJi = new double[3*integrableObjects.size()]; | 
| 101 | > | painCave.isFatal = 1; | 
| 102 | > | simError(); | 
| 103 | > | } else { | 
| 104 | > | targetPressure = simParams->getTargetPressure(); | 
| 105 | > | } | 
| 106 | > |  | 
| 107 | > | if (!simParams->haveTauBarostat()) { | 
| 108 | > | sprintf(painCave.errMsg, | 
| 109 | > | "If you use the NPT integrator, you must set tauBarostat.\n"); | 
| 110 | > | painCave.severity = OOPSE_ERROR; | 
| 111 | > | painCave.isFatal = 1; | 
| 112 | > | simError(); | 
| 113 | > | } else { | 
| 114 | > | tauBarostat = simParams->getTauBarostat(); | 
| 115 | > | } | 
| 116 | > |  | 
| 117 | > | tt2 = tauThermostat * tauThermostat; | 
| 118 | > | tb2 = tauBarostat * tauBarostat; | 
| 119 |  |  | 
| 120 | < | } | 
| 120 | > | update(); | 
| 121 | > | } | 
| 122 |  |  | 
| 123 | < | template<typename T> NPT<T>::~NPT() { | 
| 124 | < | delete[] oldPos; | 
| 73 | < | delete[] oldVel; | 
| 74 | < | delete[] oldJi; | 
| 75 | < | } | 
| 123 | > | NPT::~NPT() { | 
| 124 | > | } | 
| 125 |  |  | 
| 126 | < | template<typename T> void NPT<T>::moveA() { | 
| 126 | > | void NPT::doUpdate() { | 
| 127 |  |  | 
| 128 | < | //new version of NPT | 
| 129 | < | int i, j, k; | 
| 130 | < | double Tb[3], ji[3]; | 
| 82 | < | double mass; | 
| 83 | < | double vel[3], pos[3], frc[3]; | 
| 84 | < | double sc[3]; | 
| 85 | < | double COM[3]; | 
| 128 | > | oldPos.resize(info_->getNIntegrableObjects()); | 
| 129 | > | oldVel.resize(info_->getNIntegrableObjects()); | 
| 130 | > | oldJi.resize(info_->getNIntegrableObjects()); | 
| 131 |  |  | 
| 132 | < | instaTemp = tStats->getTemperature(); | 
| 88 | < | tStats->getPressureTensor( press ); | 
| 89 | < | instaPress = p_convert * (press[0][0] + press[1][1] + press[2][2]) / 3.0; | 
| 90 | < | instaVol = tStats->getVolume(); | 
| 132 | > | } | 
| 133 |  |  | 
| 134 | < | tStats->getCOM(COM); | 
| 134 | > | void NPT::moveA() { | 
| 135 | > | SimInfo::MoleculeIterator i; | 
| 136 | > | Molecule::IntegrableObjectIterator  j; | 
| 137 | > | Molecule* mol; | 
| 138 | > | StuntDouble* integrableObject; | 
| 139 | > | Vector3d Tb, ji; | 
| 140 | > | double mass; | 
| 141 | > | Vector3d vel; | 
| 142 | > | Vector3d pos; | 
| 143 | > | Vector3d frc; | 
| 144 | > | Vector3d sc; | 
| 145 | > | int index; | 
| 146 |  |  | 
| 147 | < | //evolve velocity half step | 
| 147 | > | chi= currentSnapshot_->getChi(); | 
| 148 | > | integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); | 
| 149 | > | loadEta(); | 
| 150 | > |  | 
| 151 | > | instaTemp =thermo.getTemperature(); | 
| 152 | > | press = thermo.getPressureTensor(); | 
| 153 | > | instaPress = OOPSEConstant::pressureConvert* (press(0, 0) + press(1, 1) + press(2, 2)) / 3.0; | 
| 154 | > | instaVol =thermo.getVolume(); | 
| 155 |  |  | 
| 156 | < | calcVelScale(); | 
| 97 | < |  | 
| 98 | < | for( i=0; i<integrableObjects.size(); i++ ){ | 
| 156 | > | Vector3d  COM = info_->getCom(); | 
| 157 |  |  | 
| 158 | < | integrableObjects[i]->getVel( vel ); | 
| 101 | < | integrableObjects[i]->getFrc( frc ); | 
| 158 | > | //evolve velocity half step | 
| 159 |  |  | 
| 160 | < | mass = integrableObjects[i]->getMass(); | 
| 160 | > | calcVelScale(); | 
| 161 |  |  | 
| 162 | < | getVelScaleA( sc, vel ); | 
| 162 | > | for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { | 
| 163 | > | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 164 | > | integrableObject = mol->nextIntegrableObject(j)) { | 
| 165 | > |  | 
| 166 | > | vel = integrableObject->getVel(); | 
| 167 | > | frc = integrableObject->getFrc(); | 
| 168 |  |  | 
| 169 | < | for (j=0; j < 3; j++) { | 
| 169 | > | mass = integrableObject->getMass(); | 
| 170 |  |  | 
| 171 | < | // velocity half step  (use chi from previous step here): | 
| 110 | < | vel[j] += dt2 * ((frc[j] / mass ) * eConvert - sc[j]); | 
| 171 | > | getVelScaleA(sc, vel); | 
| 172 |  |  | 
| 173 | < | } | 
| 173 | > | // velocity half step  (use chi from previous step here): | 
| 174 | > | //vel[j] += dt2 * ((frc[j] / mass) * OOPSEConstant::energyConvert - sc[j]); | 
| 175 | > | vel += dt2*OOPSEConstant::energyConvert/mass* frc - dt2*sc; | 
| 176 | > | integrableObject->setVel(vel); | 
| 177 |  |  | 
| 178 | < | integrableObjects[i]->setVel( vel ); | 
| 178 | > | if (integrableObject->isDirectional()) { | 
| 179 |  |  | 
| 180 | < | if( integrableObjects[i]->isDirectional() ){ | 
| 180 | > | // get and convert the torque to body frame | 
| 181 |  |  | 
| 182 | < | // get and convert the torque to body frame | 
| 182 | > | Tb = integrableObject->lab2Body(integrableObject->getTrq()); | 
| 183 |  |  | 
| 184 | < | integrableObjects[i]->getTrq( Tb ); | 
| 121 | < | integrableObjects[i]->lab2Body( Tb ); | 
| 184 | > | // get the angular momentum, and propagate a half step | 
| 185 |  |  | 
| 186 | < | // get the angular momentum, and propagate a half step | 
| 186 | > | ji = integrableObject->getJ(); | 
| 187 |  |  | 
| 188 | < | integrableObjects[i]->getJ( ji ); | 
| 188 | > | //ji[j] += dt2 * (Tb[j] * OOPSEConstant::energyConvert - ji[j]*chi); | 
| 189 | > | ji += dt2*OOPSEConstant::energyConvert * Tb - dt2*chi* ji; | 
| 190 | > |  | 
| 191 | > | rotAlgo->rotate(integrableObject, ji, dt); | 
| 192 |  |  | 
| 193 | < | for (j=0; j < 3; j++) | 
| 194 | < | ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi); | 
| 193 | > | integrableObject->setJ(ji); | 
| 194 | > | } | 
| 195 | > |  | 
| 196 | > | } | 
| 197 | > | } | 
| 198 | > | // evolve chi and eta  half step | 
| 199 |  |  | 
| 200 | < | this->rotationPropagation( integrableObjects[i], ji ); | 
| 200 | > | chi += dt2 * (instaTemp / targetTemp - 1.0) / tt2; | 
| 201 | > |  | 
| 202 | > | evolveEtaA(); | 
| 203 |  |  | 
| 204 | < | integrableObjects[i]->setJ( ji ); | 
| 204 | > | //calculate the integral of chidt | 
| 205 | > | integralOfChidt += dt2 * chi; | 
| 206 | > |  | 
| 207 | > | index = 0; | 
| 208 | > | for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { | 
| 209 | > | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 210 | > | integrableObject = mol->nextIntegrableObject(j)) { | 
| 211 | > | oldPos[index++] = integrableObject->getPos(); | 
| 212 | > | } | 
| 213 |  | } | 
| 214 | < | } | 
| 214 | > |  | 
| 215 | > | //the first estimation of r(t+dt) is equal to  r(t) | 
| 216 |  |  | 
| 217 | < | // evolve chi and eta  half step | 
| 217 | > | for(int k = 0; k < maxIterNum_; k++) { | 
| 218 | > | index = 0; | 
| 219 | > | for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { | 
| 220 | > | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 221 | > | integrableObject = mol->nextIntegrableObject(j)) { | 
| 222 |  |  | 
| 223 | < | evolveChiA(); | 
| 224 | < | evolveEtaA(); | 
| 223 | > | vel = integrableObject->getVel(); | 
| 224 | > | pos = integrableObject->getPos(); | 
| 225 |  |  | 
| 226 | < | //calculate the integral of chidt | 
| 142 | < | integralOfChidt += dt2*chi; | 
| 226 | > | this->getPosScale(pos, COM, index, sc); | 
| 227 |  |  | 
| 228 | < | //save the old positions | 
| 229 | < | for(i = 0; i < integrableObjects.size(); i++){ | 
| 146 | < | integrableObjects[i]->getPos(pos); | 
| 147 | < | for(j = 0; j < 3; j++) | 
| 148 | < | oldPos[i*3 + j] = pos[j]; | 
| 149 | < | } | 
| 228 | > | pos = oldPos[index] + dt * (vel + sc); | 
| 229 | > | integrableObject->setPos(pos); | 
| 230 |  |  | 
| 231 | < | //the first estimation of r(t+dt) is equal to  r(t) | 
| 231 | > | ++index; | 
| 232 | > | } | 
| 233 | > | } | 
| 234 |  |  | 
| 235 | < | for(k = 0; k < 5; k ++){ | 
| 235 | > | rattle->constraintA(); | 
| 236 | > | } | 
| 237 |  |  | 
| 238 | < | for(i =0 ; i < integrableObjects.size(); i++){ | 
| 238 | > | // Scale the box after all the positions have been moved: | 
| 239 |  |  | 
| 240 | < | integrableObjects[i]->getVel(vel); | 
| 158 | < | integrableObjects[i]->getPos(pos); | 
| 240 | > | this->scaleSimBox(); | 
| 241 |  |  | 
| 242 | < | this->getPosScale( pos, COM, i, sc ); | 
| 243 | < |  | 
| 162 | < | for(j = 0; j < 3; j++) | 
| 163 | < | pos[j] = oldPos[i*3 + j] + dt*(vel[j] + sc[j]); | 
| 242 | > | currentSnapshot_->setChi(chi); | 
| 243 | > | currentSnapshot_->setIntegralOfChiDt(integralOfChidt); | 
| 244 |  |  | 
| 245 | < | integrableObjects[i]->setPos( pos ); | 
| 166 | < | } | 
| 167 | < |  | 
| 168 | < | if(nConstrained) | 
| 169 | < | constrainA(); | 
| 245 | > | saveEta(); | 
| 246 |  | } | 
| 247 |  |  | 
| 248 | + | void NPT::moveB(void) { | 
| 249 | + | SimInfo::MoleculeIterator i; | 
| 250 | + | Molecule::IntegrableObjectIterator  j; | 
| 251 | + | Molecule* mol; | 
| 252 | + | StuntDouble* integrableObject; | 
| 253 | + | int index; | 
| 254 | + | Vector3d Tb; | 
| 255 | + | Vector3d ji; | 
| 256 | + | Vector3d sc; | 
| 257 | + | Vector3d vel; | 
| 258 | + | Vector3d frc; | 
| 259 | + | double mass; | 
| 260 |  |  | 
| 173 | – | // Scale the box after all the positions have been moved: | 
| 261 |  |  | 
| 262 | < | this->scaleSimBox(); | 
| 263 | < | } | 
| 262 | > | chi= currentSnapshot_->getChi(); | 
| 263 | > | integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); | 
| 264 | > | double oldChi  = chi; | 
| 265 | > | double prevChi; | 
| 266 |  |  | 
| 267 | < | template<typename T> void NPT<T>::moveB( void ){ | 
| 268 | < |  | 
| 269 | < | //new version of NPT | 
| 270 | < | int i, j, k; | 
| 271 | < | double Tb[3], ji[3], sc[3]; | 
| 272 | < | double vel[3], frc[3]; | 
| 273 | < | double mass; | 
| 274 | < |  | 
| 275 | < | // Set things up for the iteration: | 
| 276 | < |  | 
| 277 | < | for( i=0; i<integrableObjects.size(); i++ ){ | 
| 278 | < |  | 
| 190 | < | integrableObjects[i]->getVel( vel ); | 
| 191 | < |  | 
| 192 | < | for (j=0; j < 3; j++) | 
| 193 | < | oldVel[3*i + j]  = vel[j]; | 
| 194 | < |  | 
| 195 | < | if( integrableObjects[i]->isDirectional() ){ | 
| 196 | < |  | 
| 197 | < | integrableObjects[i]->getJ( ji ); | 
| 198 | < |  | 
| 199 | < | for (j=0; j < 3; j++) | 
| 200 | < | oldJi[3*i + j] = ji[j]; | 
| 201 | < |  | 
| 267 | > | loadEta(); | 
| 268 | > |  | 
| 269 | > | //save velocity and angular momentum | 
| 270 | > | index = 0; | 
| 271 | > | for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { | 
| 272 | > | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 273 | > | integrableObject = mol->nextIntegrableObject(j)) { | 
| 274 | > |  | 
| 275 | > | oldVel[index] = integrableObject->getVel(); | 
| 276 | > | oldJi[index] = integrableObject->getJ(); | 
| 277 | > | ++index; | 
| 278 | > | } | 
| 279 |  | } | 
| 203 | – | } | 
| 280 |  |  | 
| 281 | < | // do the iteration: | 
| 281 | > | // do the iteration: | 
| 282 | > | instaVol =thermo.getVolume(); | 
| 283 |  |  | 
| 284 | < | instaVol = tStats->getVolume(); | 
| 284 | > | for(int k = 0; k < maxIterNum_; k++) { | 
| 285 | > | instaTemp =thermo.getTemperature(); | 
| 286 | > | instaPress =thermo.getPressure(); | 
| 287 |  |  | 
| 288 | < | for (k=0; k < 4; k++) { | 
| 288 | > | // evolve chi another half step using the temperature at t + dt/2 | 
| 289 | > | prevChi = chi; | 
| 290 | > | chi = oldChi + dt2 * (instaTemp / targetTemp - 1.0) / tt2; | 
| 291 |  |  | 
| 292 | < | instaTemp = tStats->getTemperature(); | 
| 293 | < | instaPress = tStats->getPressure(); | 
| 292 | > | //evolve eta | 
| 293 | > | this->evolveEtaB(); | 
| 294 | > | this->calcVelScale(); | 
| 295 |  |  | 
| 296 | < | // evolve chi another half step using the temperature at t + dt/2 | 
| 296 | > | index = 0; | 
| 297 | > | for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { | 
| 298 | > | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 299 | > | integrableObject = mol->nextIntegrableObject(j)) { | 
| 300 |  |  | 
| 301 | < | this->evolveChiB(); | 
| 302 | < | this->evolveEtaB(); | 
| 218 | < | this->calcVelScale(); | 
| 301 | > | frc = integrableObject->getFrc(); | 
| 302 | > | vel = integrableObject->getVel(); | 
| 303 |  |  | 
| 304 | < | for( i=0; i<integrableObjects.size(); i++ ){ | 
| 304 | > | mass = integrableObject->getMass(); | 
| 305 |  |  | 
| 306 | < | integrableObjects[i]->getFrc( frc ); | 
| 223 | < | integrableObjects[i]->getVel(vel); | 
| 306 | > | getVelScaleB(sc, index); | 
| 307 |  |  | 
| 308 | < | mass = integrableObjects[i]->getMass(); | 
| 308 | > | // velocity half step | 
| 309 | > | //vel[j] = oldVel[3 * i + j] + dt2 *((frc[j] / mass) * OOPSEConstant::energyConvert - sc[j]); | 
| 310 | > | vel = oldVel[index] + dt2*OOPSEConstant::energyConvert/mass* frc - dt2*sc; | 
| 311 | > | integrableObject->setVel(vel); | 
| 312 |  |  | 
| 313 | < | getVelScaleB( sc, i ); | 
| 313 | > | if (integrableObject->isDirectional()) { | 
| 314 | > | // get and convert the torque to body frame | 
| 315 | > | Tb = integrableObject->lab2Body(integrableObject->getTrq()); | 
| 316 |  |  | 
| 317 | < | // velocity half step | 
| 318 | < | for (j=0; j < 3; j++) | 
| 319 | < | vel[j] = oldVel[3*i+j] + dt2 * ((frc[j] / mass ) * eConvert - sc[j]); | 
| 317 | > | //ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * OOPSEConstant::energyConvert - oldJi[3*i+j]*chi); | 
| 318 | > | ji = oldJi[index] + dt2*OOPSEConstant::energyConvert*Tb - dt2*chi*oldJi[index]; | 
| 319 | > | integrableObject->setJ(ji); | 
| 320 | > | } | 
| 321 |  |  | 
| 322 | < | integrableObjects[i]->setVel( vel ); | 
| 323 | < |  | 
| 235 | < | if( integrableObjects[i]->isDirectional() ){ | 
| 236 | < |  | 
| 237 | < | // get and convert the torque to body frame | 
| 238 | < |  | 
| 239 | < | integrableObjects[i]->getTrq( Tb ); | 
| 240 | < | integrableObjects[i]->lab2Body( Tb ); | 
| 241 | < |  | 
| 242 | < | for (j=0; j < 3; j++) | 
| 243 | < | ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * eConvert - oldJi[3*i+j]*chi); | 
| 244 | < |  | 
| 245 | < | integrableObjects[i]->setJ( ji ); | 
| 322 | > | ++index; | 
| 323 | > | } | 
| 324 |  | } | 
| 325 | + |  | 
| 326 | + | rattle->constraintB(); | 
| 327 | + |  | 
| 328 | + | if ((fabs(prevChi - chi) <= chiTolerance) && this->etaConverged()) | 
| 329 | + | break; | 
| 330 |  | } | 
| 331 |  |  | 
| 332 | < | if(nConstrained) | 
| 333 | < | constrainB(); | 
| 332 | > | //calculate integral of chidt | 
| 333 | > | integralOfChidt += dt2 * chi; | 
| 334 |  |  | 
| 335 | < | if ( this->chiConverged() && this->etaConverged() ) break; | 
| 336 | < | } | 
| 335 | > | currentSnapshot_->setChi(chi); | 
| 336 | > | currentSnapshot_->setIntegralOfChiDt(integralOfChidt); | 
| 337 |  |  | 
| 338 | < | //calculate integral of chida | 
| 256 | < | integralOfChidt += dt2*chi; | 
| 257 | < |  | 
| 258 | < |  | 
| 259 | < | } | 
| 260 | < |  | 
| 261 | < | template<typename T> void NPT<T>::resetIntegrator() { | 
| 262 | < | chi = 0.0; | 
| 263 | < | T::resetIntegrator(); | 
| 264 | < | } | 
| 265 | < |  | 
| 266 | < | template<typename T> void NPT<T>::evolveChiA() { | 
| 267 | < | chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; | 
| 268 | < | oldChi = chi; | 
| 269 | < | } | 
| 270 | < |  | 
| 271 | < | template<typename T> void NPT<T>::evolveChiB() { | 
| 272 | < |  | 
| 273 | < | prevChi = chi; | 
| 274 | < | chi = oldChi + dt2 * ( instaTemp / targetTemp - 1.0) / tt2; | 
| 275 | < | } | 
| 276 | < |  | 
| 277 | < | template<typename T> bool NPT<T>::chiConverged() { | 
| 278 | < |  | 
| 279 | < | return ( fabs( prevChi - chi ) <= chiTolerance ); | 
| 280 | < | } | 
| 281 | < |  | 
| 282 | < | template<typename T> int NPT<T>::readyCheck() { | 
| 283 | < |  | 
| 284 | < | //check parent's readyCheck() first | 
| 285 | < | if (T::readyCheck() == -1) | 
| 286 | < | return -1; | 
| 287 | < |  | 
| 288 | < | // First check to see if we have a target temperature. | 
| 289 | < | // Not having one is fatal. | 
| 290 | < |  | 
| 291 | < | if (!have_target_temp) { | 
| 292 | < | sprintf( painCave.errMsg, | 
| 293 | < | "NPT error: You can't use the NPT integrator\n" | 
| 294 | < | "   without a targetTemp!\n" | 
| 295 | < | ); | 
| 296 | < | painCave.isFatal = 1; | 
| 297 | < | simError(); | 
| 298 | < | return -1; | 
| 338 | > | saveEta(); | 
| 339 |  | } | 
| 340 |  |  | 
| 341 | < | if (!have_target_pressure) { | 
| 342 | < | sprintf( painCave.errMsg, | 
| 343 | < | "NPT error: You can't use the NPT integrator\n" | 
| 344 | < | "   without a targetPressure!\n" | 
| 305 | < | ); | 
| 306 | < | painCave.isFatal = 1; | 
| 307 | < | simError(); | 
| 308 | < | return -1; | 
| 341 | > | void NPT::resetIntegrator(){ | 
| 342 | > | currentSnapshot_->setChi(0.0); | 
| 343 | > | currentSnapshot_->setIntegralOfChiDt(0.0); | 
| 344 | > | resetEta(); | 
| 345 |  | } | 
| 346 |  |  | 
| 311 | – | // We must set tauThermostat. | 
| 347 |  |  | 
| 348 | < | if (!have_tau_thermostat) { | 
| 349 | < | sprintf( painCave.errMsg, | 
| 350 | < | "NPT error: If you use the NPT\n" | 
| 351 | < | "   integrator, you must set tauThermostat.\n"); | 
| 352 | < | painCave.isFatal = 1; | 
| 318 | < | simError(); | 
| 319 | < | return -1; | 
| 320 | < | } | 
| 321 | < |  | 
| 322 | < | // We must set tauBarostat. | 
| 323 | < |  | 
| 324 | < | if (!have_tau_barostat) { | 
| 325 | < | sprintf( painCave.errMsg, | 
| 326 | < | "If you use the NPT integrator, you must set tauBarostat.\n"); | 
| 327 | < | painCave.severity = OOPSE_ERROR; | 
| 328 | < | painCave.isFatal = 1; | 
| 329 | < | simError(); | 
| 330 | < | return -1; | 
| 331 | < | } | 
| 332 | < |  | 
| 333 | < | if (!have_chi_tolerance) { | 
| 334 | < | sprintf( painCave.errMsg, | 
| 335 | < | "Setting chi tolerance to 1e-6 in NPT integrator\n"); | 
| 336 | < | chiTolerance = 1e-6; | 
| 337 | < | have_chi_tolerance = 1; | 
| 338 | < | painCave.severity = OOPSE_INFO; | 
| 339 | < | painCave.isFatal = 0; | 
| 340 | < | simError(); | 
| 341 | < | } | 
| 342 | < |  | 
| 343 | < | if (!have_eta_tolerance) { | 
| 344 | < | sprintf( painCave.errMsg, | 
| 345 | < | "Setting eta tolerance to 1e-6 in NPT integrator"); | 
| 346 | < | etaTolerance = 1e-6; | 
| 347 | < | have_eta_tolerance = 1; | 
| 348 | < | painCave.severity = OOPSE_INFO; | 
| 349 | < | painCave.isFatal = 0; | 
| 350 | < | simError(); | 
| 351 | < | } | 
| 352 | < |  | 
| 353 | < | // We need NkBT a lot, so just set it here: This is the RAW number | 
| 354 | < | // of integrableObjects, so no subtraction or addition of constraints or | 
| 355 | < | // orientational degrees of freedom: | 
| 356 | < |  | 
| 357 | < | NkBT = (double)(info->getTotIntegrableObjects()) * kB * targetTemp; | 
| 358 | < |  | 
| 359 | < | // fkBT is used because the thermostat operates on more degrees of freedom | 
| 360 | < | // than the barostat (when there are particles with orientational degrees | 
| 361 | < | // of freedom). | 
| 362 | < |  | 
| 363 | < | fkBT = (double)(info->getNDF()) * kB * targetTemp; | 
| 364 | < |  | 
| 365 | < | tt2 = tauThermostat * tauThermostat; | 
| 366 | < | tb2 = tauBarostat * tauBarostat; | 
| 367 | < |  | 
| 368 | < | return 1; | 
| 348 | > | void NPT::resetEta() { | 
| 349 | > | Mat3x3d etaMat(0.0); | 
| 350 | > | currentSnapshot_->setEta(etaMat); | 
| 351 | > | } | 
| 352 | > |  | 
| 353 |  | } |