| 1 |
gezelter |
507 |
/* |
| 2 |
gezelter |
246 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
| 3 |
|
|
* |
| 4 |
|
|
* The University of Notre Dame grants you ("Licensee") a |
| 5 |
|
|
* non-exclusive, royalty free, license to use, modify and |
| 6 |
|
|
* redistribute this software in source and binary code form, provided |
| 7 |
|
|
* that the following conditions are met: |
| 8 |
|
|
* |
| 9 |
|
|
* 1. Acknowledgement of the program authors must be made in any |
| 10 |
|
|
* publication of scientific results based in part on use of the |
| 11 |
|
|
* program. An acceptable form of acknowledgement is citation of |
| 12 |
|
|
* the article in which the program was described (Matthew |
| 13 |
|
|
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
| 14 |
|
|
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
| 15 |
|
|
* Parallel Simulation Engine for Molecular Dynamics," |
| 16 |
|
|
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
| 17 |
|
|
* |
| 18 |
|
|
* 2. Redistributions of source code must retain the above copyright |
| 19 |
|
|
* notice, this list of conditions and the following disclaimer. |
| 20 |
|
|
* |
| 21 |
|
|
* 3. Redistributions in binary form must reproduce the above copyright |
| 22 |
|
|
* notice, this list of conditions and the following disclaimer in the |
| 23 |
|
|
* documentation and/or other materials provided with the |
| 24 |
|
|
* distribution. |
| 25 |
|
|
* |
| 26 |
|
|
* This software is provided "AS IS," without a warranty of any |
| 27 |
|
|
* kind. All express or implied conditions, representations and |
| 28 |
|
|
* warranties, including any implied warranty of merchantability, |
| 29 |
|
|
* fitness for a particular purpose or non-infringement, are hereby |
| 30 |
|
|
* excluded. The University of Notre Dame and its licensors shall not |
| 31 |
|
|
* be liable for any damages suffered by licensee as a result of |
| 32 |
|
|
* using, modifying or distributing the software or its |
| 33 |
|
|
* derivatives. In no event will the University of Notre Dame or its |
| 34 |
|
|
* licensors be liable for any lost revenue, profit or data, or for |
| 35 |
|
|
* direct, indirect, special, consequential, incidental or punitive |
| 36 |
|
|
* damages, however caused and regardless of the theory of liability, |
| 37 |
|
|
* arising out of the use of or inability to use software, even if the |
| 38 |
|
|
* University of Notre Dame has been advised of the possibility of |
| 39 |
|
|
* such damages. |
| 40 |
|
|
*/ |
| 41 |
|
|
|
| 42 |
tim |
3 |
#include "brains/SimInfo.hpp" |
| 43 |
|
|
#include "brains/Thermo.hpp" |
| 44 |
gezelter |
246 |
#include "integrators/IntegratorCreator.hpp" |
| 45 |
|
|
#include "integrators/NPTf.hpp" |
| 46 |
|
|
#include "primitives/Molecule.hpp" |
| 47 |
|
|
#include "utils/OOPSEConstant.hpp" |
| 48 |
tim |
3 |
#include "utils/simError.h" |
| 49 |
gezelter |
2 |
|
| 50 |
gezelter |
246 |
namespace oopse { |
| 51 |
gezelter |
2 |
|
| 52 |
gezelter |
507 |
// Basic non-isotropic thermostating and barostating via the Melchionna |
| 53 |
|
|
// modification of the Hoover algorithm: |
| 54 |
|
|
// |
| 55 |
|
|
// Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, |
| 56 |
|
|
// Molec. Phys., 78, 533. |
| 57 |
|
|
// |
| 58 |
|
|
// and |
| 59 |
|
|
// |
| 60 |
|
|
// Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. |
| 61 |
gezelter |
2 |
|
| 62 |
gezelter |
507 |
void NPTf::evolveEtaA() { |
| 63 |
gezelter |
2 |
|
| 64 |
gezelter |
507 |
int i, j; |
| 65 |
gezelter |
2 |
|
| 66 |
gezelter |
246 |
for(i = 0; i < 3; i ++){ |
| 67 |
gezelter |
507 |
for(j = 0; j < 3; j++){ |
| 68 |
|
|
if( i == j) { |
| 69 |
|
|
eta(i, j) += dt2 * instaVol * (press(i, j) - targetPressure/OOPSEConstant::pressureConvert) / (NkBT*tb2); |
| 70 |
|
|
} else { |
| 71 |
|
|
eta(i, j) += dt2 * instaVol * press(i, j) / (NkBT*tb2); |
| 72 |
|
|
} |
| 73 |
|
|
} |
| 74 |
gezelter |
2 |
} |
| 75 |
gezelter |
246 |
|
| 76 |
|
|
for(i = 0; i < 3; i++) { |
| 77 |
gezelter |
507 |
for (j = 0; j < 3; j++) { |
| 78 |
gezelter |
246 |
oldEta(i, j) = eta(i, j); |
| 79 |
gezelter |
507 |
} |
| 80 |
gezelter |
2 |
} |
| 81 |
gezelter |
246 |
|
| 82 |
gezelter |
507 |
} |
| 83 |
gezelter |
2 |
|
| 84 |
gezelter |
507 |
void NPTf::evolveEtaB() { |
| 85 |
gezelter |
2 |
|
| 86 |
gezelter |
246 |
int i; |
| 87 |
|
|
int j; |
| 88 |
gezelter |
2 |
|
| 89 |
gezelter |
246 |
for(i = 0; i < 3; i++) { |
| 90 |
gezelter |
507 |
for (j = 0; j < 3; j++) { |
| 91 |
|
|
prevEta(i, j) = eta(i, j); |
| 92 |
|
|
} |
| 93 |
gezelter |
246 |
} |
| 94 |
gezelter |
2 |
|
| 95 |
gezelter |
246 |
for(i = 0; i < 3; i ++){ |
| 96 |
gezelter |
507 |
for(j = 0; j < 3; j++){ |
| 97 |
|
|
if( i == j) { |
| 98 |
|
|
eta(i, j) = oldEta(i, j) + dt2 * instaVol * |
| 99 |
|
|
(press(i, j) - targetPressure/OOPSEConstant::pressureConvert) / (NkBT*tb2); |
| 100 |
|
|
} else { |
| 101 |
|
|
eta(i, j) = oldEta(i, j) + dt2 * instaVol * press(i, j) / (NkBT*tb2); |
| 102 |
|
|
} |
| 103 |
|
|
} |
| 104 |
gezelter |
246 |
} |
| 105 |
gezelter |
2 |
|
| 106 |
|
|
|
| 107 |
gezelter |
507 |
} |
| 108 |
gezelter |
2 |
|
| 109 |
gezelter |
507 |
void NPTf::calcVelScale(){ |
| 110 |
gezelter |
2 |
|
| 111 |
gezelter |
507 |
for (int i = 0; i < 3; i++ ) { |
| 112 |
|
|
for (int j = 0; j < 3; j++ ) { |
| 113 |
|
|
vScale(i, j) = eta(i, j); |
| 114 |
gezelter |
2 |
|
| 115 |
gezelter |
507 |
if (i == j) { |
| 116 |
|
|
vScale(i, j) += chi; |
| 117 |
|
|
} |
| 118 |
gezelter |
2 |
} |
| 119 |
|
|
} |
| 120 |
|
|
} |
| 121 |
|
|
|
| 122 |
gezelter |
507 |
void NPTf::getVelScaleA(Vector3d& sc, const Vector3d& vel){ |
| 123 |
gezelter |
246 |
sc = vScale * vel; |
| 124 |
gezelter |
507 |
} |
| 125 |
gezelter |
2 |
|
| 126 |
gezelter |
507 |
void NPTf::getVelScaleB(Vector3d& sc, int index ) { |
| 127 |
|
|
sc = vScale * oldVel[index]; |
| 128 |
|
|
} |
| 129 |
gezelter |
2 |
|
| 130 |
gezelter |
507 |
void NPTf::getPosScale(const Vector3d& pos, const Vector3d& COM, int index, Vector3d& sc) { |
| 131 |
gezelter |
2 |
|
| 132 |
gezelter |
246 |
/**@todo */ |
| 133 |
|
|
Vector3d rj = (oldPos[index] + pos)/2.0 -COM; |
| 134 |
|
|
sc = eta * rj; |
| 135 |
gezelter |
507 |
} |
| 136 |
gezelter |
2 |
|
| 137 |
gezelter |
507 |
void NPTf::scaleSimBox(){ |
| 138 |
gezelter |
2 |
|
| 139 |
gezelter |
507 |
int i; |
| 140 |
|
|
int j; |
| 141 |
|
|
int k; |
| 142 |
|
|
Mat3x3d scaleMat; |
| 143 |
|
|
double eta2ij; |
| 144 |
|
|
double bigScale, smallScale, offDiagMax; |
| 145 |
|
|
Mat3x3d hm; |
| 146 |
|
|
Mat3x3d hmnew; |
| 147 |
gezelter |
2 |
|
| 148 |
|
|
|
| 149 |
|
|
|
| 150 |
gezelter |
507 |
// Scale the box after all the positions have been moved: |
| 151 |
gezelter |
2 |
|
| 152 |
gezelter |
507 |
// Use a taylor expansion for eta products: Hmat = Hmat . exp(dt * etaMat) |
| 153 |
|
|
// Hmat = Hmat . ( Ident + dt * etaMat + dt^2 * etaMat*etaMat / 2) |
| 154 |
gezelter |
2 |
|
| 155 |
gezelter |
507 |
bigScale = 1.0; |
| 156 |
|
|
smallScale = 1.0; |
| 157 |
|
|
offDiagMax = 0.0; |
| 158 |
gezelter |
2 |
|
| 159 |
gezelter |
507 |
for(i=0; i<3; i++){ |
| 160 |
|
|
for(j=0; j<3; j++){ |
| 161 |
gezelter |
2 |
|
| 162 |
gezelter |
507 |
// Calculate the matrix Product of the eta array (we only need |
| 163 |
|
|
// the ij element right now): |
| 164 |
gezelter |
2 |
|
| 165 |
gezelter |
507 |
eta2ij = 0.0; |
| 166 |
|
|
for(k=0; k<3; k++){ |
| 167 |
|
|
eta2ij += eta(i, k) * eta(k, j); |
| 168 |
|
|
} |
| 169 |
gezelter |
2 |
|
| 170 |
gezelter |
507 |
scaleMat(i, j) = 0.0; |
| 171 |
|
|
// identity matrix (see above): |
| 172 |
|
|
if (i == j) scaleMat(i, j) = 1.0; |
| 173 |
|
|
// Taylor expansion for the exponential truncated at second order: |
| 174 |
|
|
scaleMat(i, j) += dt*eta(i, j) + 0.5*dt*dt*eta2ij; |
| 175 |
gezelter |
2 |
|
| 176 |
|
|
|
| 177 |
gezelter |
507 |
if (i != j) |
| 178 |
|
|
if (fabs(scaleMat(i, j)) > offDiagMax) |
| 179 |
|
|
offDiagMax = fabs(scaleMat(i, j)); |
| 180 |
|
|
} |
| 181 |
|
|
|
| 182 |
|
|
if (scaleMat(i, i) > bigScale) bigScale = scaleMat(i, i); |
| 183 |
|
|
if (scaleMat(i, i) < smallScale) smallScale = scaleMat(i, i); |
| 184 |
gezelter |
2 |
} |
| 185 |
|
|
|
| 186 |
gezelter |
507 |
if ((bigScale > 1.01) || (smallScale < 0.99)) { |
| 187 |
|
|
sprintf( painCave.errMsg, |
| 188 |
|
|
"NPTf error: Attempting a Box scaling of more than 1 percent.\n" |
| 189 |
|
|
" Check your tauBarostat, as it is probably too small!\n\n" |
| 190 |
|
|
" scaleMat = [%lf\t%lf\t%lf]\n" |
| 191 |
|
|
" [%lf\t%lf\t%lf]\n" |
| 192 |
|
|
" [%lf\t%lf\t%lf]\n" |
| 193 |
|
|
" eta = [%lf\t%lf\t%lf]\n" |
| 194 |
|
|
" [%lf\t%lf\t%lf]\n" |
| 195 |
|
|
" [%lf\t%lf\t%lf]\n", |
| 196 |
|
|
scaleMat(0, 0),scaleMat(0, 1),scaleMat(0, 2), |
| 197 |
|
|
scaleMat(1, 0),scaleMat(1, 1),scaleMat(1, 2), |
| 198 |
|
|
scaleMat(2, 0),scaleMat(2, 1),scaleMat(2, 2), |
| 199 |
|
|
eta(0, 0),eta(0, 1),eta(0, 2), |
| 200 |
|
|
eta(1, 0),eta(1, 1),eta(1, 2), |
| 201 |
|
|
eta(2, 0),eta(2, 1),eta(2, 2)); |
| 202 |
|
|
painCave.isFatal = 1; |
| 203 |
|
|
simError(); |
| 204 |
|
|
} else if (offDiagMax > 0.01) { |
| 205 |
|
|
sprintf( painCave.errMsg, |
| 206 |
|
|
"NPTf error: Attempting an off-diagonal Box scaling of more than 1 percent.\n" |
| 207 |
|
|
" Check your tauBarostat, as it is probably too small!\n\n" |
| 208 |
|
|
" scaleMat = [%lf\t%lf\t%lf]\n" |
| 209 |
|
|
" [%lf\t%lf\t%lf]\n" |
| 210 |
|
|
" [%lf\t%lf\t%lf]\n" |
| 211 |
|
|
" eta = [%lf\t%lf\t%lf]\n" |
| 212 |
|
|
" [%lf\t%lf\t%lf]\n" |
| 213 |
|
|
" [%lf\t%lf\t%lf]\n", |
| 214 |
|
|
scaleMat(0, 0),scaleMat(0, 1),scaleMat(0, 2), |
| 215 |
|
|
scaleMat(1, 0),scaleMat(1, 1),scaleMat(1, 2), |
| 216 |
|
|
scaleMat(2, 0),scaleMat(2, 1),scaleMat(2, 2), |
| 217 |
|
|
eta(0, 0),eta(0, 1),eta(0, 2), |
| 218 |
|
|
eta(1, 0),eta(1, 1),eta(1, 2), |
| 219 |
|
|
eta(2, 0),eta(2, 1),eta(2, 2)); |
| 220 |
|
|
painCave.isFatal = 1; |
| 221 |
|
|
simError(); |
| 222 |
|
|
} else { |
| 223 |
gezelter |
2 |
|
| 224 |
gezelter |
507 |
Mat3x3d hmat = currentSnapshot_->getHmat(); |
| 225 |
|
|
hmat = hmat *scaleMat; |
| 226 |
|
|
currentSnapshot_->setHmat(hmat); |
| 227 |
gezelter |
246 |
|
| 228 |
gezelter |
507 |
} |
| 229 |
gezelter |
2 |
} |
| 230 |
|
|
|
| 231 |
gezelter |
507 |
bool NPTf::etaConverged() { |
| 232 |
gezelter |
246 |
int i; |
| 233 |
|
|
double diffEta, sumEta; |
| 234 |
gezelter |
2 |
|
| 235 |
gezelter |
246 |
sumEta = 0; |
| 236 |
|
|
for(i = 0; i < 3; i++) { |
| 237 |
gezelter |
507 |
sumEta += pow(prevEta(i, i) - eta(i, i), 2); |
| 238 |
gezelter |
246 |
} |
| 239 |
|
|
|
| 240 |
|
|
diffEta = sqrt( sumEta / 3.0 ); |
| 241 |
gezelter |
2 |
|
| 242 |
gezelter |
246 |
return ( diffEta <= etaTolerance ); |
| 243 |
gezelter |
507 |
} |
| 244 |
gezelter |
2 |
|
| 245 |
gezelter |
507 |
double NPTf::calcConservedQuantity(){ |
| 246 |
gezelter |
2 |
|
| 247 |
gezelter |
246 |
chi= currentSnapshot_->getChi(); |
| 248 |
|
|
integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); |
| 249 |
|
|
loadEta(); |
| 250 |
|
|
|
| 251 |
|
|
// We need NkBT a lot, so just set it here: This is the RAW number |
| 252 |
|
|
// of integrableObjects, so no subtraction or addition of constraints or |
| 253 |
|
|
// orientational degrees of freedom: |
| 254 |
|
|
NkBT = info_->getNGlobalIntegrableObjects()*OOPSEConstant::kB *targetTemp; |
| 255 |
gezelter |
2 |
|
| 256 |
gezelter |
246 |
// fkBT is used because the thermostat operates on more degrees of freedom |
| 257 |
|
|
// than the barostat (when there are particles with orientational degrees |
| 258 |
|
|
// of freedom). |
| 259 |
|
|
fkBT = info_->getNdf()*OOPSEConstant::kB *targetTemp; |
| 260 |
|
|
|
| 261 |
|
|
double conservedQuantity; |
| 262 |
|
|
double totalEnergy; |
| 263 |
|
|
double thermostat_kinetic; |
| 264 |
|
|
double thermostat_potential; |
| 265 |
|
|
double barostat_kinetic; |
| 266 |
|
|
double barostat_potential; |
| 267 |
|
|
double trEta; |
| 268 |
gezelter |
2 |
|
| 269 |
gezelter |
246 |
totalEnergy = thermo.getTotalE(); |
| 270 |
gezelter |
2 |
|
| 271 |
gezelter |
246 |
thermostat_kinetic = fkBT * tt2 * chi * chi /(2.0 * OOPSEConstant::energyConvert); |
| 272 |
gezelter |
2 |
|
| 273 |
gezelter |
246 |
thermostat_potential = fkBT* integralOfChidt / OOPSEConstant::energyConvert; |
| 274 |
gezelter |
2 |
|
| 275 |
gezelter |
246 |
SquareMatrix<double, 3> tmp = eta.transpose() * eta; |
| 276 |
|
|
trEta = tmp.trace(); |
| 277 |
|
|
|
| 278 |
|
|
barostat_kinetic = NkBT * tb2 * trEta /(2.0 * OOPSEConstant::energyConvert); |
| 279 |
gezelter |
2 |
|
| 280 |
gezelter |
246 |
barostat_potential = (targetPressure * thermo.getVolume() / OOPSEConstant::pressureConvert) /OOPSEConstant::energyConvert; |
| 281 |
gezelter |
2 |
|
| 282 |
gezelter |
246 |
conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + |
| 283 |
gezelter |
507 |
barostat_kinetic + barostat_potential; |
| 284 |
gezelter |
2 |
|
| 285 |
gezelter |
246 |
return conservedQuantity; |
| 286 |
gezelter |
2 |
|
| 287 |
gezelter |
507 |
} |
| 288 |
gezelter |
2 |
|
| 289 |
gezelter |
507 |
void NPTf::loadEta() { |
| 290 |
gezelter |
246 |
eta= currentSnapshot_->getEta(); |
| 291 |
gezelter |
2 |
|
| 292 |
gezelter |
246 |
//if (!eta.isDiagonal()) { |
| 293 |
|
|
// sprintf( painCave.errMsg, |
| 294 |
|
|
// "NPTf error: the diagonal elements of eta matrix are not the same or etaMat is not a diagonal matrix"); |
| 295 |
|
|
// painCave.isFatal = 1; |
| 296 |
|
|
// simError(); |
| 297 |
|
|
//} |
| 298 |
gezelter |
507 |
} |
| 299 |
gezelter |
2 |
|
| 300 |
gezelter |
507 |
void NPTf::saveEta() { |
| 301 |
gezelter |
246 |
currentSnapshot_->setEta(eta); |
| 302 |
gezelter |
507 |
} |
| 303 |
gezelter |
2 |
|
| 304 |
|
|
} |