| 6 |
|
* redistribute this software in source and binary code form, provided |
| 7 |
|
* that the following conditions are met: |
| 8 |
|
* |
| 9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
| 10 |
< |
* publication of scientific results based in part on use of the |
| 11 |
< |
* program. An acceptable form of acknowledgement is citation of |
| 12 |
< |
* the article in which the program was described (Matthew |
| 13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
| 14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
| 15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
| 16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
| 17 |
< |
* |
| 18 |
< |
* 2. Redistributions of source code must retain the above copyright |
| 9 |
> |
* 1. Redistributions of source code must retain the above copyright |
| 10 |
|
* notice, this list of conditions and the following disclaimer. |
| 11 |
|
* |
| 12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
| 12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
| 13 |
|
* notice, this list of conditions and the following disclaimer in the |
| 14 |
|
* documentation and/or other materials provided with the |
| 15 |
|
* distribution. |
| 28 |
|
* arising out of the use of or inability to use software, even if the |
| 29 |
|
* University of Notre Dame has been advised of the possibility of |
| 30 |
|
* such damages. |
| 31 |
+ |
* |
| 32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
| 33 |
+ |
* research, please cite the appropriate papers when you publish your |
| 34 |
+ |
* work. Good starting points are: |
| 35 |
+ |
* |
| 36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
| 37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
| 38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
| 39 |
+ |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
| 40 |
+ |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
| 41 |
|
*/ |
| 42 |
|
|
| 43 |
|
#include "brains/SimInfo.hpp" |
| 45 |
|
#include "integrators/IntegratorCreator.hpp" |
| 46 |
|
#include "integrators/NPTf.hpp" |
| 47 |
|
#include "primitives/Molecule.hpp" |
| 48 |
< |
#include "utils/OOPSEConstant.hpp" |
| 48 |
> |
#include "utils/PhysicalConstants.hpp" |
| 49 |
|
#include "utils/simError.h" |
| 50 |
|
|
| 51 |
< |
namespace oopse { |
| 51 |
> |
namespace OpenMD { |
| 52 |
|
|
| 53 |
|
// Basic non-isotropic thermostating and barostating via the Melchionna |
| 54 |
|
// modification of the Hoover algorithm: |
| 67 |
|
for(i = 0; i < 3; i ++){ |
| 68 |
|
for(j = 0; j < 3; j++){ |
| 69 |
|
if( i == j) { |
| 70 |
< |
eta(i, j) += dt2 * instaVol * (press(i, j) - targetPressure/OOPSEConstant::pressureConvert) / (NkBT*tb2); |
| 70 |
> |
eta(i, j) += dt2 * instaVol * (press(i, j) - targetPressure/PhysicalConstants::pressureConvert) / (NkBT*tb2); |
| 71 |
|
} else { |
| 72 |
|
eta(i, j) += dt2 * instaVol * press(i, j) / (NkBT*tb2); |
| 73 |
|
} |
| 97 |
|
for(j = 0; j < 3; j++){ |
| 98 |
|
if( i == j) { |
| 99 |
|
eta(i, j) = oldEta(i, j) + dt2 * instaVol * |
| 100 |
< |
(press(i, j) - targetPressure/OOPSEConstant::pressureConvert) / (NkBT*tb2); |
| 100 |
> |
(press(i, j) - targetPressure/PhysicalConstants::pressureConvert) / (NkBT*tb2); |
| 101 |
|
} else { |
| 102 |
|
eta(i, j) = oldEta(i, j) + dt2 * instaVol * press(i, j) / (NkBT*tb2); |
| 103 |
|
} |
| 114 |
|
vScale(i, j) = eta(i, j); |
| 115 |
|
|
| 116 |
|
if (i == j) { |
| 117 |
< |
vScale(i, j) += chi; |
| 117 |
> |
vScale(i, j) += thermostat.first; |
| 118 |
|
} |
| 119 |
|
} |
| 120 |
|
} |
| 131 |
|
void NPTf::getPosScale(const Vector3d& pos, const Vector3d& COM, int index, Vector3d& sc) { |
| 132 |
|
|
| 133 |
|
/**@todo */ |
| 134 |
< |
Vector3d rj = (oldPos[index] + pos)/2.0 -COM; |
| 134 |
> |
Vector3d rj = (oldPos[index] + pos)/(RealType)2.0 -COM; |
| 135 |
|
sc = eta * rj; |
| 136 |
|
} |
| 137 |
|
|
| 141 |
|
int j; |
| 142 |
|
int k; |
| 143 |
|
Mat3x3d scaleMat; |
| 144 |
< |
double eta2ij; |
| 145 |
< |
double bigScale, smallScale, offDiagMax; |
| 144 |
> |
RealType eta2ij; |
| 145 |
> |
RealType bigScale, smallScale, offDiagMax; |
| 146 |
|
Mat3x3d hm; |
| 147 |
|
Mat3x3d hmnew; |
| 148 |
|
|
| 222 |
|
simError(); |
| 223 |
|
} else { |
| 224 |
|
|
| 225 |
< |
Mat3x3d hmat = currentSnapshot_->getHmat(); |
| 225 |
> |
Mat3x3d hmat = snap->getHmat(); |
| 226 |
|
hmat = hmat *scaleMat; |
| 227 |
< |
currentSnapshot_->setHmat(hmat); |
| 227 |
> |
snap->setHmat(hmat); |
| 228 |
|
|
| 229 |
|
} |
| 230 |
|
} |
| 231 |
|
|
| 232 |
|
bool NPTf::etaConverged() { |
| 233 |
|
int i; |
| 234 |
< |
double diffEta, sumEta; |
| 234 |
> |
RealType diffEta, sumEta; |
| 235 |
|
|
| 236 |
|
sumEta = 0; |
| 237 |
|
for(i = 0; i < 3; i++) { |
| 243 |
|
return ( diffEta <= etaTolerance ); |
| 244 |
|
} |
| 245 |
|
|
| 246 |
< |
double NPTf::calcConservedQuantity(){ |
| 247 |
< |
|
| 248 |
< |
chi= currentSnapshot_->getChi(); |
| 248 |
< |
integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); |
| 246 |
> |
RealType NPTf::calcConservedQuantity(){ |
| 247 |
> |
|
| 248 |
> |
thermostat = snap->getThermostat(); |
| 249 |
|
loadEta(); |
| 250 |
|
|
| 251 |
|
// We need NkBT a lot, so just set it here: This is the RAW number |
| 252 |
|
// of integrableObjects, so no subtraction or addition of constraints or |
| 253 |
|
// orientational degrees of freedom: |
| 254 |
< |
NkBT = info_->getNGlobalIntegrableObjects()*OOPSEConstant::kB *targetTemp; |
| 254 |
> |
NkBT = info_->getNGlobalIntegrableObjects()*PhysicalConstants::kB *targetTemp; |
| 255 |
|
|
| 256 |
|
// fkBT is used because the thermostat operates on more degrees of freedom |
| 257 |
|
// than the barostat (when there are particles with orientational degrees |
| 258 |
|
// of freedom). |
| 259 |
< |
fkBT = info_->getNdf()*OOPSEConstant::kB *targetTemp; |
| 259 |
> |
fkBT = info_->getNdf()*PhysicalConstants::kB *targetTemp; |
| 260 |
|
|
| 261 |
< |
double conservedQuantity; |
| 262 |
< |
double totalEnergy; |
| 263 |
< |
double thermostat_kinetic; |
| 264 |
< |
double thermostat_potential; |
| 265 |
< |
double barostat_kinetic; |
| 266 |
< |
double barostat_potential; |
| 267 |
< |
double trEta; |
| 261 |
> |
RealType conservedQuantity; |
| 262 |
> |
RealType totalEnergy; |
| 263 |
> |
RealType thermostat_kinetic; |
| 264 |
> |
RealType thermostat_potential; |
| 265 |
> |
RealType barostat_kinetic; |
| 266 |
> |
RealType barostat_potential; |
| 267 |
> |
RealType trEta; |
| 268 |
|
|
| 269 |
< |
totalEnergy = thermo.getTotalE(); |
| 269 |
> |
totalEnergy = thermo.getTotalEnergy(); |
| 270 |
> |
|
| 271 |
> |
thermostat_kinetic = fkBT * tt2 * thermostat.first * |
| 272 |
> |
thermostat.first /(2.0 * PhysicalConstants::energyConvert); |
| 273 |
|
|
| 274 |
< |
thermostat_kinetic = fkBT * tt2 * chi * chi /(2.0 * OOPSEConstant::energyConvert); |
| 274 |
> |
thermostat_potential = fkBT* thermostat.second / PhysicalConstants::energyConvert; |
| 275 |
|
|
| 276 |
< |
thermostat_potential = fkBT* integralOfChidt / OOPSEConstant::energyConvert; |
| 274 |
< |
|
| 275 |
< |
SquareMatrix<double, 3> tmp = eta.transpose() * eta; |
| 276 |
> |
SquareMatrix<RealType, 3> tmp = eta.transpose() * eta; |
| 277 |
|
trEta = tmp.trace(); |
| 278 |
|
|
| 279 |
< |
barostat_kinetic = NkBT * tb2 * trEta /(2.0 * OOPSEConstant::energyConvert); |
| 279 |
> |
barostat_kinetic = NkBT * tb2 * trEta /(2.0 * PhysicalConstants::energyConvert); |
| 280 |
|
|
| 281 |
< |
barostat_potential = (targetPressure * thermo.getVolume() / OOPSEConstant::pressureConvert) /OOPSEConstant::energyConvert; |
| 281 |
> |
barostat_potential = (targetPressure * thermo.getVolume() / PhysicalConstants::pressureConvert) /PhysicalConstants::energyConvert; |
| 282 |
|
|
| 283 |
|
conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + |
| 284 |
|
barostat_kinetic + barostat_potential; |
| 288 |
|
} |
| 289 |
|
|
| 290 |
|
void NPTf::loadEta() { |
| 291 |
< |
eta= currentSnapshot_->getEta(); |
| 291 |
> |
eta= snap->getBarostat(); |
| 292 |
|
|
| 293 |
|
//if (!eta.isDiagonal()) { |
| 294 |
|
// sprintf( painCave.errMsg, |
| 299 |
|
} |
| 300 |
|
|
| 301 |
|
void NPTf::saveEta() { |
| 302 |
< |
currentSnapshot_->setEta(eta); |
| 302 |
> |
snap->setBarostat(eta); |
| 303 |
|
} |
| 304 |
|
|
| 305 |
|
} |