| 6 | 
  | 
 * redistribute this software in source and binary code form, provided | 
| 7 | 
  | 
 * that the following conditions are met: | 
| 8 | 
  | 
 * | 
| 9 | 
< | 
 * 1. Acknowledgement of the program authors must be made in any | 
| 10 | 
< | 
 *    publication of scientific results based in part on use of the | 
| 11 | 
< | 
 *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | 
< | 
 *    the article in which the program was described (Matthew | 
| 13 | 
< | 
 *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | 
< | 
 *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | 
< | 
 *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | 
< | 
 *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | 
< | 
 * | 
| 18 | 
< | 
 * 2. Redistributions of source code must retain the above copyright | 
| 9 | 
> | 
 * 1. Redistributions of source code must retain the above copyright | 
| 10 | 
  | 
 *    notice, this list of conditions and the following disclaimer. | 
| 11 | 
  | 
 * | 
| 12 | 
< | 
 * 3. Redistributions in binary form must reproduce the above copyright | 
| 12 | 
> | 
 * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | 
  | 
 *    notice, this list of conditions and the following disclaimer in the | 
| 14 | 
  | 
 *    documentation and/or other materials provided with the | 
| 15 | 
  | 
 *    distribution. | 
| 28 | 
  | 
 * arising out of the use of or inability to use software, even if the | 
| 29 | 
  | 
 * University of Notre Dame has been advised of the possibility of | 
| 30 | 
  | 
 * such damages. | 
| 31 | 
+ | 
 * | 
| 32 | 
+ | 
 * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | 
+ | 
 * research, please cite the appropriate papers when you publish your | 
| 34 | 
+ | 
 * work.  Good starting points are: | 
| 35 | 
+ | 
 *                                                                       | 
| 36 | 
+ | 
 * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).              | 
| 37 | 
+ | 
 * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).           | 
| 38 | 
+ | 
 * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).           | 
| 39 | 
+ | 
 * [4]  Vardeman & Gezelter, in progress (2009).                         | 
| 40 | 
  | 
 */ | 
| 41 | 
  | 
  | 
| 42 | 
  | 
#include "brains/SimInfo.hpp" | 
| 44 | 
  | 
#include "integrators/IntegratorCreator.hpp" | 
| 45 | 
  | 
#include "integrators/NPTf.hpp" | 
| 46 | 
  | 
#include "primitives/Molecule.hpp" | 
| 47 | 
< | 
#include "utils/OOPSEConstant.hpp" | 
| 47 | 
> | 
#include "utils/PhysicalConstants.hpp" | 
| 48 | 
  | 
#include "utils/simError.h" | 
| 49 | 
  | 
 | 
| 50 | 
< | 
namespace oopse { | 
| 50 | 
> | 
namespace OpenMD { | 
| 51 | 
  | 
 | 
| 52 | 
  | 
  // Basic non-isotropic thermostating and barostating via the Melchionna | 
| 53 | 
  | 
  // modification of the Hoover algorithm: | 
| 66 | 
  | 
    for(i = 0; i < 3; i ++){ | 
| 67 | 
  | 
      for(j = 0; j < 3; j++){ | 
| 68 | 
  | 
        if( i == j) { | 
| 69 | 
< | 
          eta(i, j) += dt2 *  instaVol * (press(i, j) - targetPressure/OOPSEConstant::pressureConvert) / (NkBT*tb2); | 
| 69 | 
> | 
          eta(i, j) += dt2 *  instaVol * (press(i, j) - targetPressure/PhysicalConstants::pressureConvert) / (NkBT*tb2); | 
| 70 | 
  | 
        } else { | 
| 71 | 
  | 
          eta(i, j) += dt2 * instaVol * press(i, j) / (NkBT*tb2); | 
| 72 | 
  | 
        } | 
| 96 | 
  | 
      for(j = 0; j < 3; j++){ | 
| 97 | 
  | 
        if( i == j) { | 
| 98 | 
  | 
          eta(i, j) = oldEta(i, j) + dt2 *  instaVol * | 
| 99 | 
< | 
            (press(i, j) - targetPressure/OOPSEConstant::pressureConvert) / (NkBT*tb2); | 
| 99 | 
> | 
            (press(i, j) - targetPressure/PhysicalConstants::pressureConvert) / (NkBT*tb2); | 
| 100 | 
  | 
        } else { | 
| 101 | 
  | 
          eta(i, j) = oldEta(i, j) + dt2 * instaVol * press(i, j) / (NkBT*tb2); | 
| 102 | 
  | 
        } | 
| 251 | 
  | 
    // We need NkBT a lot, so just set it here: This is the RAW number | 
| 252 | 
  | 
    // of integrableObjects, so no subtraction or addition of constraints or | 
| 253 | 
  | 
    // orientational degrees of freedom: | 
| 254 | 
< | 
    NkBT = info_->getNGlobalIntegrableObjects()*OOPSEConstant::kB *targetTemp; | 
| 254 | 
> | 
    NkBT = info_->getNGlobalIntegrableObjects()*PhysicalConstants::kB *targetTemp; | 
| 255 | 
  | 
 | 
| 256 | 
  | 
    // fkBT is used because the thermostat operates on more degrees of freedom | 
| 257 | 
  | 
    // than the barostat (when there are particles with orientational degrees | 
| 258 | 
  | 
    // of freedom).   | 
| 259 | 
< | 
    fkBT = info_->getNdf()*OOPSEConstant::kB *targetTemp;     | 
| 259 | 
> | 
    fkBT = info_->getNdf()*PhysicalConstants::kB *targetTemp;     | 
| 260 | 
  | 
     | 
| 261 | 
  | 
    RealType conservedQuantity; | 
| 262 | 
  | 
    RealType totalEnergy; | 
| 268 | 
  | 
 | 
| 269 | 
  | 
    totalEnergy = thermo.getTotalE(); | 
| 270 | 
  | 
 | 
| 271 | 
< | 
    thermostat_kinetic = fkBT * tt2 * chi * chi /(2.0 * OOPSEConstant::energyConvert); | 
| 271 | 
> | 
    thermostat_kinetic = fkBT * tt2 * chi * chi /(2.0 * PhysicalConstants::energyConvert); | 
| 272 | 
  | 
 | 
| 273 | 
< | 
    thermostat_potential = fkBT* integralOfChidt / OOPSEConstant::energyConvert; | 
| 273 | 
> | 
    thermostat_potential = fkBT* integralOfChidt / PhysicalConstants::energyConvert; | 
| 274 | 
  | 
 | 
| 275 | 
  | 
    SquareMatrix<RealType, 3> tmp = eta.transpose() * eta; | 
| 276 | 
  | 
    trEta = tmp.trace(); | 
| 277 | 
  | 
     | 
| 278 | 
< | 
    barostat_kinetic = NkBT * tb2 * trEta /(2.0 * OOPSEConstant::energyConvert); | 
| 278 | 
> | 
    barostat_kinetic = NkBT * tb2 * trEta /(2.0 * PhysicalConstants::energyConvert); | 
| 279 | 
  | 
 | 
| 280 | 
< | 
    barostat_potential = (targetPressure * thermo.getVolume() / OOPSEConstant::pressureConvert) /OOPSEConstant::energyConvert; | 
| 280 | 
> | 
    barostat_potential = (targetPressure * thermo.getVolume() / PhysicalConstants::pressureConvert) /PhysicalConstants::energyConvert; | 
| 281 | 
  | 
 | 
| 282 | 
  | 
    conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + | 
| 283 | 
  | 
      barostat_kinetic + barostat_potential; |