| 1 | /* | 
| 2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Acknowledgement of the program authors must be made in any | 
| 10 | *    publication of scientific results based in part on use of the | 
| 11 | *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | *    the article in which the program was described (Matthew | 
| 13 | *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | * | 
| 18 | * 2. Redistributions of source code must retain the above copyright | 
| 19 | *    notice, this list of conditions and the following disclaimer. | 
| 20 | * | 
| 21 | * 3. Redistributions in binary form must reproduce the above copyright | 
| 22 | *    notice, this list of conditions and the following disclaimer in the | 
| 23 | *    documentation and/or other materials provided with the | 
| 24 | *    distribution. | 
| 25 | * | 
| 26 | * This software is provided "AS IS," without a warranty of any | 
| 27 | * kind. All express or implied conditions, representations and | 
| 28 | * warranties, including any implied warranty of merchantability, | 
| 29 | * fitness for a particular purpose or non-infringement, are hereby | 
| 30 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 31 | * be liable for any damages suffered by licensee as a result of | 
| 32 | * using, modifying or distributing the software or its | 
| 33 | * derivatives. In no event will the University of Notre Dame or its | 
| 34 | * licensors be liable for any lost revenue, profit or data, or for | 
| 35 | * direct, indirect, special, consequential, incidental or punitive | 
| 36 | * damages, however caused and regardless of the theory of liability, | 
| 37 | * arising out of the use of or inability to use software, even if the | 
| 38 | * University of Notre Dame has been advised of the possibility of | 
| 39 | * such damages. | 
| 40 | */ | 
| 41 |  | 
| 42 | #include "brains/SimInfo.hpp" | 
| 43 | #include "brains/Thermo.hpp" | 
| 44 | #include "integrators/IntegratorCreator.hpp" | 
| 45 | #include "integrators/NPTf.hpp" | 
| 46 | #include "primitives/Molecule.hpp" | 
| 47 | #include "utils/OOPSEConstant.hpp" | 
| 48 | #include "utils/simError.h" | 
| 49 |  | 
| 50 | namespace oopse { | 
| 51 |  | 
| 52 | // Basic non-isotropic thermostating and barostating via the Melchionna | 
| 53 | // modification of the Hoover algorithm: | 
| 54 | // | 
| 55 | //    Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, | 
| 56 | //       Molec. Phys., 78, 533. | 
| 57 | // | 
| 58 | //           and | 
| 59 | // | 
| 60 | //    Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. | 
| 61 |  | 
| 62 | void NPTf::evolveEtaA() { | 
| 63 |  | 
| 64 | int i, j; | 
| 65 |  | 
| 66 | for(i = 0; i < 3; i ++){ | 
| 67 | for(j = 0; j < 3; j++){ | 
| 68 | if( i == j) { | 
| 69 | eta(i, j) += dt2 *  instaVol * (press(i, j) - targetPressure/OOPSEConstant::pressureConvert) / (NkBT*tb2); | 
| 70 | } else { | 
| 71 | eta(i, j) += dt2 * instaVol * press(i, j) / (NkBT*tb2); | 
| 72 | } | 
| 73 | } | 
| 74 | } | 
| 75 |  | 
| 76 | for(i = 0; i < 3; i++) { | 
| 77 | for (j = 0; j < 3; j++) { | 
| 78 | oldEta(i, j) = eta(i, j); | 
| 79 | } | 
| 80 | } | 
| 81 |  | 
| 82 | } | 
| 83 |  | 
| 84 | void NPTf::evolveEtaB() { | 
| 85 |  | 
| 86 | int i; | 
| 87 | int j; | 
| 88 |  | 
| 89 | for(i = 0; i < 3; i++) { | 
| 90 | for (j = 0; j < 3; j++) { | 
| 91 | prevEta(i, j) = eta(i, j); | 
| 92 | } | 
| 93 | } | 
| 94 |  | 
| 95 | for(i = 0; i < 3; i ++){ | 
| 96 | for(j = 0; j < 3; j++){ | 
| 97 | if( i == j) { | 
| 98 | eta(i, j) = oldEta(i, j) + dt2 *  instaVol * | 
| 99 | (press(i, j) - targetPressure/OOPSEConstant::pressureConvert) / (NkBT*tb2); | 
| 100 | } else { | 
| 101 | eta(i, j) = oldEta(i, j) + dt2 * instaVol * press(i, j) / (NkBT*tb2); | 
| 102 | } | 
| 103 | } | 
| 104 | } | 
| 105 |  | 
| 106 |  | 
| 107 | } | 
| 108 |  | 
| 109 | void NPTf::calcVelScale(){ | 
| 110 |  | 
| 111 | for (int i = 0; i < 3; i++ ) { | 
| 112 | for (int j = 0; j < 3; j++ ) { | 
| 113 | vScale(i, j) = eta(i, j); | 
| 114 |  | 
| 115 | if (i == j) { | 
| 116 | vScale(i, j) += chi; | 
| 117 | } | 
| 118 | } | 
| 119 | } | 
| 120 | } | 
| 121 |  | 
| 122 | void NPTf::getVelScaleA(Vector3d& sc, const Vector3d& vel){ | 
| 123 | sc = vScale * vel; | 
| 124 | } | 
| 125 |  | 
| 126 | void NPTf::getVelScaleB(Vector3d& sc, int index ) { | 
| 127 | sc = vScale * oldVel[index]; | 
| 128 | } | 
| 129 |  | 
| 130 | void NPTf::getPosScale(const Vector3d& pos, const Vector3d& COM, int index, Vector3d& sc) { | 
| 131 |  | 
| 132 | /**@todo */ | 
| 133 | Vector3d rj = (oldPos[index] + pos)/(RealType)2.0 -COM; | 
| 134 | sc = eta * rj; | 
| 135 | } | 
| 136 |  | 
| 137 | void NPTf::scaleSimBox(){ | 
| 138 |  | 
| 139 | int i; | 
| 140 | int j; | 
| 141 | int k; | 
| 142 | Mat3x3d scaleMat; | 
| 143 | RealType eta2ij; | 
| 144 | RealType bigScale, smallScale, offDiagMax; | 
| 145 | Mat3x3d hm; | 
| 146 | Mat3x3d hmnew; | 
| 147 |  | 
| 148 |  | 
| 149 |  | 
| 150 | // Scale the box after all the positions have been moved: | 
| 151 |  | 
| 152 | // Use a taylor expansion for eta products:  Hmat = Hmat . exp(dt * etaMat) | 
| 153 | //  Hmat = Hmat . ( Ident + dt * etaMat  + dt^2 * etaMat*etaMat / 2) | 
| 154 |  | 
| 155 | bigScale = 1.0; | 
| 156 | smallScale = 1.0; | 
| 157 | offDiagMax = 0.0; | 
| 158 |  | 
| 159 | for(i=0; i<3; i++){ | 
| 160 | for(j=0; j<3; j++){ | 
| 161 |  | 
| 162 | // Calculate the matrix Product of the eta array (we only need | 
| 163 | // the ij element right now): | 
| 164 |  | 
| 165 | eta2ij = 0.0; | 
| 166 | for(k=0; k<3; k++){ | 
| 167 | eta2ij += eta(i, k) * eta(k, j); | 
| 168 | } | 
| 169 |  | 
| 170 | scaleMat(i, j) = 0.0; | 
| 171 | // identity matrix (see above): | 
| 172 | if (i == j) scaleMat(i, j) = 1.0; | 
| 173 | // Taylor expansion for the exponential truncated at second order: | 
| 174 | scaleMat(i, j) += dt*eta(i, j)  + 0.5*dt*dt*eta2ij; | 
| 175 |  | 
| 176 |  | 
| 177 | if (i != j) | 
| 178 | if (fabs(scaleMat(i, j)) > offDiagMax) | 
| 179 | offDiagMax = fabs(scaleMat(i, j)); | 
| 180 | } | 
| 181 |  | 
| 182 | if (scaleMat(i, i) > bigScale) bigScale = scaleMat(i, i); | 
| 183 | if (scaleMat(i, i) < smallScale) smallScale = scaleMat(i, i); | 
| 184 | } | 
| 185 |  | 
| 186 | if ((bigScale > 1.01) || (smallScale < 0.99)) { | 
| 187 | sprintf( painCave.errMsg, | 
| 188 | "NPTf error: Attempting a Box scaling of more than 1 percent.\n" | 
| 189 | " Check your tauBarostat, as it is probably too small!\n\n" | 
| 190 | " scaleMat = [%lf\t%lf\t%lf]\n" | 
| 191 | "            [%lf\t%lf\t%lf]\n" | 
| 192 | "            [%lf\t%lf\t%lf]\n" | 
| 193 | "      eta = [%lf\t%lf\t%lf]\n" | 
| 194 | "            [%lf\t%lf\t%lf]\n" | 
| 195 | "            [%lf\t%lf\t%lf]\n", | 
| 196 | scaleMat(0, 0),scaleMat(0, 1),scaleMat(0, 2), | 
| 197 | scaleMat(1, 0),scaleMat(1, 1),scaleMat(1, 2), | 
| 198 | scaleMat(2, 0),scaleMat(2, 1),scaleMat(2, 2), | 
| 199 | eta(0, 0),eta(0, 1),eta(0, 2), | 
| 200 | eta(1, 0),eta(1, 1),eta(1, 2), | 
| 201 | eta(2, 0),eta(2, 1),eta(2, 2)); | 
| 202 | painCave.isFatal = 1; | 
| 203 | simError(); | 
| 204 | } else if (offDiagMax > 0.01) { | 
| 205 | sprintf( painCave.errMsg, | 
| 206 | "NPTf error: Attempting an off-diagonal Box scaling of more than 1 percent.\n" | 
| 207 | " Check your tauBarostat, as it is probably too small!\n\n" | 
| 208 | " scaleMat = [%lf\t%lf\t%lf]\n" | 
| 209 | "            [%lf\t%lf\t%lf]\n" | 
| 210 | "            [%lf\t%lf\t%lf]\n" | 
| 211 | "      eta = [%lf\t%lf\t%lf]\n" | 
| 212 | "            [%lf\t%lf\t%lf]\n" | 
| 213 | "            [%lf\t%lf\t%lf]\n", | 
| 214 | scaleMat(0, 0),scaleMat(0, 1),scaleMat(0, 2), | 
| 215 | scaleMat(1, 0),scaleMat(1, 1),scaleMat(1, 2), | 
| 216 | scaleMat(2, 0),scaleMat(2, 1),scaleMat(2, 2), | 
| 217 | eta(0, 0),eta(0, 1),eta(0, 2), | 
| 218 | eta(1, 0),eta(1, 1),eta(1, 2), | 
| 219 | eta(2, 0),eta(2, 1),eta(2, 2)); | 
| 220 | painCave.isFatal = 1; | 
| 221 | simError(); | 
| 222 | } else { | 
| 223 |  | 
| 224 | Mat3x3d hmat = currentSnapshot_->getHmat(); | 
| 225 | hmat = hmat *scaleMat; | 
| 226 | currentSnapshot_->setHmat(hmat); | 
| 227 |  | 
| 228 | } | 
| 229 | } | 
| 230 |  | 
| 231 | bool NPTf::etaConverged() { | 
| 232 | int i; | 
| 233 | RealType diffEta, sumEta; | 
| 234 |  | 
| 235 | sumEta = 0; | 
| 236 | for(i = 0; i < 3; i++) { | 
| 237 | sumEta += pow(prevEta(i, i) - eta(i, i), 2); | 
| 238 | } | 
| 239 |  | 
| 240 | diffEta = sqrt( sumEta / 3.0 ); | 
| 241 |  | 
| 242 | return ( diffEta <= etaTolerance ); | 
| 243 | } | 
| 244 |  | 
| 245 | RealType NPTf::calcConservedQuantity(){ | 
| 246 |  | 
| 247 | chi= currentSnapshot_->getChi(); | 
| 248 | integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); | 
| 249 | loadEta(); | 
| 250 |  | 
| 251 | // We need NkBT a lot, so just set it here: This is the RAW number | 
| 252 | // of integrableObjects, so no subtraction or addition of constraints or | 
| 253 | // orientational degrees of freedom: | 
| 254 | NkBT = info_->getNGlobalIntegrableObjects()*OOPSEConstant::kB *targetTemp; | 
| 255 |  | 
| 256 | // fkBT is used because the thermostat operates on more degrees of freedom | 
| 257 | // than the barostat (when there are particles with orientational degrees | 
| 258 | // of freedom). | 
| 259 | fkBT = info_->getNdf()*OOPSEConstant::kB *targetTemp; | 
| 260 |  | 
| 261 | RealType conservedQuantity; | 
| 262 | RealType totalEnergy; | 
| 263 | RealType thermostat_kinetic; | 
| 264 | RealType thermostat_potential; | 
| 265 | RealType barostat_kinetic; | 
| 266 | RealType barostat_potential; | 
| 267 | RealType trEta; | 
| 268 |  | 
| 269 | totalEnergy = thermo.getTotalE(); | 
| 270 |  | 
| 271 | thermostat_kinetic = fkBT * tt2 * chi * chi /(2.0 * OOPSEConstant::energyConvert); | 
| 272 |  | 
| 273 | thermostat_potential = fkBT* integralOfChidt / OOPSEConstant::energyConvert; | 
| 274 |  | 
| 275 | SquareMatrix<RealType, 3> tmp = eta.transpose() * eta; | 
| 276 | trEta = tmp.trace(); | 
| 277 |  | 
| 278 | barostat_kinetic = NkBT * tb2 * trEta /(2.0 * OOPSEConstant::energyConvert); | 
| 279 |  | 
| 280 | barostat_potential = (targetPressure * thermo.getVolume() / OOPSEConstant::pressureConvert) /OOPSEConstant::energyConvert; | 
| 281 |  | 
| 282 | conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + | 
| 283 | barostat_kinetic + barostat_potential; | 
| 284 |  | 
| 285 | return conservedQuantity; | 
| 286 |  | 
| 287 | } | 
| 288 |  | 
| 289 | void NPTf::loadEta() { | 
| 290 | eta= currentSnapshot_->getEta(); | 
| 291 |  | 
| 292 | //if (!eta.isDiagonal()) { | 
| 293 | //    sprintf( painCave.errMsg, | 
| 294 | //             "NPTf error: the diagonal elements of eta matrix are not the same or etaMat is not a diagonal matrix"); | 
| 295 | //    painCave.isFatal = 1; | 
| 296 | //    simError(); | 
| 297 | //} | 
| 298 | } | 
| 299 |  | 
| 300 | void NPTf::saveEta() { | 
| 301 | currentSnapshot_->setEta(eta); | 
| 302 | } | 
| 303 |  | 
| 304 | } |