| 1 | #include <math.h> | 
| 2 |  | 
| 3 | #include "MatVec3.h" | 
| 4 | #include "Atom.hpp" | 
| 5 | #include "SRI.hpp" | 
| 6 | #include "AbstractClasses.hpp" | 
| 7 | #include "SimInfo.hpp" | 
| 8 | #include "ForceFields.hpp" | 
| 9 | #include "Thermo.hpp" | 
| 10 | #include "ReadWrite.hpp" | 
| 11 | #include "Integrator.hpp" | 
| 12 | #include "simError.h" | 
| 13 |  | 
| 14 | #ifdef IS_MPI | 
| 15 | #include "mpiSimulation.hpp" | 
| 16 | #endif | 
| 17 |  | 
| 18 | // Basic non-isotropic thermostating and barostating via the Melchionna | 
| 19 | // modification of the Hoover algorithm: | 
| 20 | // | 
| 21 | //    Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, | 
| 22 | //       Molec. Phys., 78, 533. | 
| 23 | // | 
| 24 | //           and | 
| 25 | // | 
| 26 | //    Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. | 
| 27 |  | 
| 28 | template<typename T> NPTf<T>::NPTf ( SimInfo *theInfo, ForceFields* the_ff): | 
| 29 | T( theInfo, the_ff ) | 
| 30 | { | 
| 31 | GenericData* data; | 
| 32 | DoubleArrayData * etaValue; | 
| 33 | vector<double> etaArray; | 
| 34 | int i,j; | 
| 35 |  | 
| 36 | for(i = 0; i < 3; i++){ | 
| 37 | for (j = 0; j < 3; j++){ | 
| 38 |  | 
| 39 | eta[i][j] = 0.0; | 
| 40 | oldEta[i][j] = 0.0; | 
| 41 | } | 
| 42 | } | 
| 43 |  | 
| 44 |  | 
| 45 | if( theInfo->useInitXSstate ){ | 
| 46 | // retrieve eta array from simInfo if it exists | 
| 47 | data = info->getProperty(ETAVALUE_ID); | 
| 48 | if(data){ | 
| 49 | etaValue = dynamic_cast<DoubleArrayData*>(data); | 
| 50 |  | 
| 51 | if(etaValue){ | 
| 52 | etaArray = etaValue->getData(); | 
| 53 |  | 
| 54 | for(i = 0; i < 3; i++){ | 
| 55 | for (j = 0; j < 3; j++){ | 
| 56 | eta[i][j] = etaArray[3*i+j]; | 
| 57 | oldEta[i][j] = eta[i][j]; | 
| 58 | } | 
| 59 | } | 
| 60 | } | 
| 61 | } | 
| 62 | } | 
| 63 |  | 
| 64 | } | 
| 65 |  | 
| 66 | template<typename T> NPTf<T>::~NPTf() { | 
| 67 |  | 
| 68 | // empty for now | 
| 69 | } | 
| 70 |  | 
| 71 | template<typename T> void NPTf<T>::resetIntegrator() { | 
| 72 |  | 
| 73 | int i, j; | 
| 74 |  | 
| 75 | for(i = 0; i < 3; i++) | 
| 76 | for (j = 0; j < 3; j++) | 
| 77 | eta[i][j] = 0.0; | 
| 78 |  | 
| 79 | T::resetIntegrator(); | 
| 80 | } | 
| 81 |  | 
| 82 | template<typename T> void NPTf<T>::evolveEtaA() { | 
| 83 |  | 
| 84 | int i, j; | 
| 85 |  | 
| 86 | for(i = 0; i < 3; i ++){ | 
| 87 | for(j = 0; j < 3; j++){ | 
| 88 | if( i == j) | 
| 89 | eta[i][j] += dt2 *  instaVol * | 
| 90 | (press[i][j] - targetPressure/p_convert) / (NkBT*tb2); | 
| 91 | else | 
| 92 | eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2); | 
| 93 | } | 
| 94 | } | 
| 95 |  | 
| 96 | for(i = 0; i < 3; i++) | 
| 97 | for (j = 0; j < 3; j++) | 
| 98 | oldEta[i][j] = eta[i][j]; | 
| 99 | } | 
| 100 |  | 
| 101 | template<typename T> void NPTf<T>::evolveEtaB() { | 
| 102 |  | 
| 103 | int i,j; | 
| 104 |  | 
| 105 | for(i = 0; i < 3; i++) | 
| 106 | for (j = 0; j < 3; j++) | 
| 107 | prevEta[i][j] = eta[i][j]; | 
| 108 |  | 
| 109 | for(i = 0; i < 3; i ++){ | 
| 110 | for(j = 0; j < 3; j++){ | 
| 111 | if( i == j) { | 
| 112 | eta[i][j] = oldEta[i][j] + dt2 *  instaVol * | 
| 113 | (press[i][j] - targetPressure/p_convert) / (NkBT*tb2); | 
| 114 | } else { | 
| 115 | eta[i][j] = oldEta[i][j] + dt2 * instaVol * press[i][j] / (NkBT*tb2); | 
| 116 | } | 
| 117 | } | 
| 118 | } | 
| 119 | } | 
| 120 |  | 
| 121 | template<typename T> void NPTf<T>::calcVelScale(void){ | 
| 122 | int i,j; | 
| 123 |  | 
| 124 | for (i = 0; i < 3; i++ ) { | 
| 125 | for (j = 0; j < 3; j++ ) { | 
| 126 | vScale[i][j] = eta[i][j]; | 
| 127 |  | 
| 128 | if (i == j) { | 
| 129 | vScale[i][j] += chi; | 
| 130 | } | 
| 131 | } | 
| 132 | } | 
| 133 | } | 
| 134 |  | 
| 135 | template<typename T> void NPTf<T>::getVelScaleA(double sc[3], double vel[3]) { | 
| 136 |  | 
| 137 | matVecMul3( vScale, vel, sc ); | 
| 138 | } | 
| 139 |  | 
| 140 | template<typename T> void NPTf<T>::getVelScaleB(double sc[3], int index ){ | 
| 141 | int j; | 
| 142 | double myVel[3]; | 
| 143 |  | 
| 144 | for (j = 0; j < 3; j++) | 
| 145 | myVel[j] = oldVel[3*index + j]; | 
| 146 |  | 
| 147 | matVecMul3( vScale, myVel, sc ); | 
| 148 | } | 
| 149 |  | 
| 150 | template<typename T> void NPTf<T>::getPosScale(double pos[3], double COM[3], | 
| 151 | int index, double sc[3]){ | 
| 152 | int j; | 
| 153 | double rj[3]; | 
| 154 |  | 
| 155 | for(j=0; j<3; j++) | 
| 156 | rj[j] = ( oldPos[index*3+j] + pos[j]) / 2.0 - COM[j]; | 
| 157 |  | 
| 158 | matVecMul3( eta, rj, sc ); | 
| 159 | } | 
| 160 |  | 
| 161 | template<typename T> void NPTf<T>::scaleSimBox( void ){ | 
| 162 |  | 
| 163 | int i,j,k; | 
| 164 | double scaleMat[3][3]; | 
| 165 | double eta2ij; | 
| 166 | double bigScale, smallScale, offDiagMax; | 
| 167 | double hm[3][3], hmnew[3][3]; | 
| 168 |  | 
| 169 |  | 
| 170 |  | 
| 171 | // Scale the box after all the positions have been moved: | 
| 172 |  | 
| 173 | // Use a taylor expansion for eta products:  Hmat = Hmat . exp(dt * etaMat) | 
| 174 | //  Hmat = Hmat . ( Ident + dt * etaMat  + dt^2 * etaMat*etaMat / 2) | 
| 175 |  | 
| 176 | bigScale = 1.0; | 
| 177 | smallScale = 1.0; | 
| 178 | offDiagMax = 0.0; | 
| 179 |  | 
| 180 | for(i=0; i<3; i++){ | 
| 181 | for(j=0; j<3; j++){ | 
| 182 |  | 
| 183 | // Calculate the matrix Product of the eta array (we only need | 
| 184 | // the ij element right now): | 
| 185 |  | 
| 186 | eta2ij = 0.0; | 
| 187 | for(k=0; k<3; k++){ | 
| 188 | eta2ij += eta[i][k] * eta[k][j]; | 
| 189 | } | 
| 190 |  | 
| 191 | scaleMat[i][j] = 0.0; | 
| 192 | // identity matrix (see above): | 
| 193 | if (i == j) scaleMat[i][j] = 1.0; | 
| 194 | // Taylor expansion for the exponential truncated at second order: | 
| 195 | scaleMat[i][j] += dt*eta[i][j]  + 0.5*dt*dt*eta2ij; | 
| 196 |  | 
| 197 |  | 
| 198 | if (i != j) | 
| 199 | if (fabs(scaleMat[i][j]) > offDiagMax) | 
| 200 | offDiagMax = fabs(scaleMat[i][j]); | 
| 201 | } | 
| 202 |  | 
| 203 | if (scaleMat[i][i] > bigScale) bigScale = scaleMat[i][i]; | 
| 204 | if (scaleMat[i][i] < smallScale) smallScale = scaleMat[i][i]; | 
| 205 | } | 
| 206 |  | 
| 207 | if ((bigScale > 1.01) || (smallScale < 0.99)) { | 
| 208 | sprintf( painCave.errMsg, | 
| 209 | "NPTf error: Attempting a Box scaling of more than 1 percent.\n" | 
| 210 | " Check your tauBarostat, as it is probably too small!\n\n" | 
| 211 | " scaleMat = [%lf\t%lf\t%lf]\n" | 
| 212 | "            [%lf\t%lf\t%lf]\n" | 
| 213 | "            [%lf\t%lf\t%lf]\n" | 
| 214 | "      eta = [%lf\t%lf\t%lf]\n" | 
| 215 | "            [%lf\t%lf\t%lf]\n" | 
| 216 | "            [%lf\t%lf\t%lf]\n", | 
| 217 | scaleMat[0][0],scaleMat[0][1],scaleMat[0][2], | 
| 218 | scaleMat[1][0],scaleMat[1][1],scaleMat[1][2], | 
| 219 | scaleMat[2][0],scaleMat[2][1],scaleMat[2][2], | 
| 220 | eta[0][0],eta[0][1],eta[0][2], | 
| 221 | eta[1][0],eta[1][1],eta[1][2], | 
| 222 | eta[2][0],eta[2][1],eta[2][2]); | 
| 223 | painCave.isFatal = 1; | 
| 224 | simError(); | 
| 225 | } else if (offDiagMax > 0.01) { | 
| 226 | sprintf( painCave.errMsg, | 
| 227 | "NPTf error: Attempting an off-diagonal Box scaling of more than 1 percent.\n" | 
| 228 | " Check your tauBarostat, as it is probably too small!\n\n" | 
| 229 | " scaleMat = [%lf\t%lf\t%lf]\n" | 
| 230 | "            [%lf\t%lf\t%lf]\n" | 
| 231 | "            [%lf\t%lf\t%lf]\n" | 
| 232 | "      eta = [%lf\t%lf\t%lf]\n" | 
| 233 | "            [%lf\t%lf\t%lf]\n" | 
| 234 | "            [%lf\t%lf\t%lf]\n", | 
| 235 | scaleMat[0][0],scaleMat[0][1],scaleMat[0][2], | 
| 236 | scaleMat[1][0],scaleMat[1][1],scaleMat[1][2], | 
| 237 | scaleMat[2][0],scaleMat[2][1],scaleMat[2][2], | 
| 238 | eta[0][0],eta[0][1],eta[0][2], | 
| 239 | eta[1][0],eta[1][1],eta[1][2], | 
| 240 | eta[2][0],eta[2][1],eta[2][2]); | 
| 241 | painCave.isFatal = 1; | 
| 242 | simError(); | 
| 243 | } else { | 
| 244 | info->getBoxM(hm); | 
| 245 | matMul3(hm, scaleMat, hmnew); | 
| 246 | info->setBoxM(hmnew); | 
| 247 | } | 
| 248 | } | 
| 249 |  | 
| 250 | template<typename T> bool NPTf<T>::etaConverged() { | 
| 251 | int i; | 
| 252 | double diffEta, sumEta; | 
| 253 |  | 
| 254 | sumEta = 0; | 
| 255 | for(i = 0; i < 3; i++) | 
| 256 | sumEta += pow(prevEta[i][i] - eta[i][i], 2); | 
| 257 |  | 
| 258 | diffEta = sqrt( sumEta / 3.0 ); | 
| 259 |  | 
| 260 | return ( diffEta <= etaTolerance ); | 
| 261 | } | 
| 262 |  | 
| 263 | template<typename T> double NPTf<T>::getConservedQuantity(void){ | 
| 264 |  | 
| 265 | double conservedQuantity; | 
| 266 | double totalEnergy; | 
| 267 | double thermostat_kinetic; | 
| 268 | double thermostat_potential; | 
| 269 | double barostat_kinetic; | 
| 270 | double barostat_potential; | 
| 271 | double trEta; | 
| 272 | double a[3][3], b[3][3]; | 
| 273 |  | 
| 274 | totalEnergy = tStats->getTotalE(); | 
| 275 |  | 
| 276 | thermostat_kinetic = fkBT * tt2 * chi * chi / | 
| 277 | (2.0 * eConvert); | 
| 278 |  | 
| 279 | thermostat_potential = fkBT* integralOfChidt / eConvert; | 
| 280 |  | 
| 281 | transposeMat3(eta, a); | 
| 282 | matMul3(a, eta, b); | 
| 283 | trEta = matTrace3(b); | 
| 284 |  | 
| 285 | barostat_kinetic = NkBT * tb2 * trEta / | 
| 286 | (2.0 * eConvert); | 
| 287 |  | 
| 288 | barostat_potential = (targetPressure * tStats->getVolume() / p_convert) / | 
| 289 | eConvert; | 
| 290 |  | 
| 291 | conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + | 
| 292 | barostat_kinetic + barostat_potential; | 
| 293 |  | 
| 294 | return conservedQuantity; | 
| 295 |  | 
| 296 | } | 
| 297 |  | 
| 298 | template<typename T> string NPTf<T>::getAdditionalParameters(void){ | 
| 299 | string parameters; | 
| 300 | const int BUFFERSIZE = 2000; // size of the read buffer | 
| 301 | char buffer[BUFFERSIZE]; | 
| 302 |  | 
| 303 | sprintf(buffer,"\t%G\t%G;", chi, integralOfChidt); | 
| 304 | parameters += buffer; | 
| 305 |  | 
| 306 | for(int i = 0; i < 3; i++){ | 
| 307 | sprintf(buffer,"\t%G\t%G\t%G;", eta[i][0], eta[i][1], eta[i][2]); | 
| 308 | parameters += buffer; | 
| 309 | } | 
| 310 |  | 
| 311 | return parameters; | 
| 312 |  | 
| 313 | } |