| 1 | < | #include <math.h> | 
| 2 | < |  | 
| 3 | < | #include "math/MatVec3.h" | 
| 4 | < | #include "primitives/Atom.hpp" | 
| 5 | < | #include "primitives/SRI.hpp" | 
| 6 | < | #include "primitives/AbstractClasses.hpp" | 
| 1 | > | /* | 
| 2 | > | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | > | * | 
| 4 | > | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | > | * non-exclusive, royalty free, license to use, modify and | 
| 6 | > | * redistribute this software in source and binary code form, provided | 
| 7 | > | * that the following conditions are met: | 
| 8 | > | * | 
| 9 | > | * 1. Acknowledgement of the program authors must be made in any | 
| 10 | > | *    publication of scientific results based in part on use of the | 
| 11 | > | *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | > | *    the article in which the program was described (Matthew | 
| 13 | > | *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | > | *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | > | *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | > | *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | > | * | 
| 18 | > | * 2. Redistributions of source code must retain the above copyright | 
| 19 | > | *    notice, this list of conditions and the following disclaimer. | 
| 20 | > | * | 
| 21 | > | * 3. Redistributions in binary form must reproduce the above copyright | 
| 22 | > | *    notice, this list of conditions and the following disclaimer in the | 
| 23 | > | *    documentation and/or other materials provided with the | 
| 24 | > | *    distribution. | 
| 25 | > | * | 
| 26 | > | * This software is provided "AS IS," without a warranty of any | 
| 27 | > | * kind. All express or implied conditions, representations and | 
| 28 | > | * warranties, including any implied warranty of merchantability, | 
| 29 | > | * fitness for a particular purpose or non-infringement, are hereby | 
| 30 | > | * excluded.  The University of Notre Dame and its licensors shall not | 
| 31 | > | * be liable for any damages suffered by licensee as a result of | 
| 32 | > | * using, modifying or distributing the software or its | 
| 33 | > | * derivatives. In no event will the University of Notre Dame or its | 
| 34 | > | * licensors be liable for any lost revenue, profit or data, or for | 
| 35 | > | * direct, indirect, special, consequential, incidental or punitive | 
| 36 | > | * damages, however caused and regardless of the theory of liability, | 
| 37 | > | * arising out of the use of or inability to use software, even if the | 
| 38 | > | * University of Notre Dame has been advised of the possibility of | 
| 39 | > | * such damages. | 
| 40 | > | */ | 
| 41 | > |  | 
| 42 |  | #include "brains/SimInfo.hpp" | 
| 8 | – | #include "UseTheForce/ForceFields.hpp" | 
| 43 |  | #include "brains/Thermo.hpp" | 
| 44 | < | #include "io/ReadWrite.hpp" | 
| 45 | < | #include "integrators/Integrator.hpp" | 
| 44 | > | #include "integrators/IntegratorCreator.hpp" | 
| 45 | > | #include "integrators/NPTf.hpp" | 
| 46 | > | #include "primitives/Molecule.hpp" | 
| 47 | > | #include "utils/OOPSEConstant.hpp" | 
| 48 |  | #include "utils/simError.h" | 
| 49 |  |  | 
| 50 | < | #ifdef IS_MPI | 
| 15 | < | #include "brains/mpiSimulation.hpp" | 
| 16 | < | #endif | 
| 50 | > | namespace oopse { | 
| 51 |  |  | 
| 52 |  | // Basic non-isotropic thermostating and barostating via the Melchionna | 
| 53 |  | // modification of the Hoover algorithm: | 
| 59 |  | // | 
| 60 |  | //    Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. | 
| 61 |  |  | 
| 62 | < | template<typename T> NPTf<T>::NPTf ( SimInfo *theInfo, ForceFields* the_ff): | 
| 29 | < | T( theInfo, the_ff ) | 
| 30 | < | { | 
| 31 | < | GenericData* data; | 
| 32 | < | DoubleArrayData * etaValue; | 
| 33 | < | vector<double> etaArray; | 
| 34 | < | int i,j; | 
| 62 | > | void NPTf::evolveEtaA() { | 
| 63 |  |  | 
| 64 | < | for(i = 0; i < 3; i++){ | 
| 37 | < | for (j = 0; j < 3; j++){ | 
| 64 | > | int i, j; | 
| 65 |  |  | 
| 66 | < | eta[i][j] = 0.0; | 
| 67 | < | oldEta[i][j] = 0.0; | 
| 66 | > | for(i = 0; i < 3; i ++){ | 
| 67 | > | for(j = 0; j < 3; j++){ | 
| 68 | > | if( i == j) { | 
| 69 | > | eta(i, j) += dt2 *  instaVol * (press(i, j) - targetPressure/OOPSEConstant::pressureConvert) / (NkBT*tb2); | 
| 70 | > | } else { | 
| 71 | > | eta(i, j) += dt2 * instaVol * press(i, j) / (NkBT*tb2); | 
| 72 | > | } | 
| 73 | > | } | 
| 74 |  | } | 
| 75 | < | } | 
| 76 | < |  | 
| 77 | < |  | 
| 78 | < | if( theInfo->useInitXSstate ){ | 
| 79 | < | // retrieve eta array from simInfo if it exists | 
| 47 | < | data = info->getProperty(ETAVALUE_ID); | 
| 48 | < | if(data){ | 
| 49 | < | etaValue = dynamic_cast<DoubleArrayData*>(data); | 
| 50 | < |  | 
| 51 | < | if(etaValue){ | 
| 52 | < | etaArray = etaValue->getData(); | 
| 53 | < |  | 
| 54 | < | for(i = 0; i < 3; i++){ | 
| 55 | < | for (j = 0; j < 3; j++){ | 
| 56 | < | eta[i][j] = etaArray[3*i+j]; | 
| 57 | < | oldEta[i][j] = eta[i][j]; | 
| 58 | < | } | 
| 59 | < | } | 
| 60 | < | } | 
| 75 | > |  | 
| 76 | > | for(i = 0; i < 3; i++) { | 
| 77 | > | for (j = 0; j < 3; j++) { | 
| 78 | > | oldEta(i, j) = eta(i, j); | 
| 79 | > | } | 
| 80 |  | } | 
| 81 | < | } | 
| 63 | < |  | 
| 81 | > |  | 
| 82 |  | } | 
| 83 |  |  | 
| 84 | < | template<typename T> NPTf<T>::~NPTf() { | 
| 84 | > | void NPTf::evolveEtaB() { | 
| 85 |  |  | 
| 86 | < | // empty for now | 
| 87 | < | } | 
| 86 | > | int i; | 
| 87 | > | int j; | 
| 88 |  |  | 
| 89 | < | template<typename T> void NPTf<T>::resetIntegrator() { | 
| 89 | > | for(i = 0; i < 3; i++) { | 
| 90 | > | for (j = 0; j < 3; j++) { | 
| 91 | > | prevEta(i, j) = eta(i, j); | 
| 92 | > | } | 
| 93 | > | } | 
| 94 |  |  | 
| 95 | < | int i, j; | 
| 96 | < |  | 
| 97 | < | for(i = 0; i < 3; i++) | 
| 98 | < | for (j = 0; j < 3; j++) | 
| 99 | < | eta[i][j] = 0.0; | 
| 100 | < |  | 
| 101 | < | T::resetIntegrator(); | 
| 102 | < | } | 
| 103 | < |  | 
| 82 | < | template<typename T> void NPTf<T>::evolveEtaA() { | 
| 83 | < |  | 
| 84 | < | int i, j; | 
| 85 | < |  | 
| 86 | < | for(i = 0; i < 3; i ++){ | 
| 87 | < | for(j = 0; j < 3; j++){ | 
| 88 | < | if( i == j) | 
| 89 | < | eta[i][j] += dt2 *  instaVol * | 
| 90 | < | (press[i][j] - targetPressure/p_convert) / (NkBT*tb2); | 
| 91 | < | else | 
| 92 | < | eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2); | 
| 95 | > | for(i = 0; i < 3; i ++){ | 
| 96 | > | for(j = 0; j < 3; j++){ | 
| 97 | > | if( i == j) { | 
| 98 | > | eta(i, j) = oldEta(i, j) + dt2 *  instaVol * | 
| 99 | > | (press(i, j) - targetPressure/OOPSEConstant::pressureConvert) / (NkBT*tb2); | 
| 100 | > | } else { | 
| 101 | > | eta(i, j) = oldEta(i, j) + dt2 * instaVol * press(i, j) / (NkBT*tb2); | 
| 102 | > | } | 
| 103 | > | } | 
| 104 |  | } | 
| 105 | < | } | 
| 105 | > |  | 
| 106 |  |  | 
| 96 | – | for(i = 0; i < 3; i++) | 
| 97 | – | for (j = 0; j < 3; j++) | 
| 98 | – | oldEta[i][j] = eta[i][j]; | 
| 107 |  | } | 
| 108 |  |  | 
| 109 | < | template<typename T> void NPTf<T>::evolveEtaB() { | 
| 109 | > | void NPTf::calcVelScale(){ | 
| 110 |  |  | 
| 111 | < | int i,j; | 
| 111 | > | for (int i = 0; i < 3; i++ ) { | 
| 112 | > | for (int j = 0; j < 3; j++ ) { | 
| 113 | > | vScale(i, j) = eta(i, j); | 
| 114 |  |  | 
| 115 | < | for(i = 0; i < 3; i++) | 
| 116 | < | for (j = 0; j < 3; j++) | 
| 107 | < | prevEta[i][j] = eta[i][j]; | 
| 108 | < |  | 
| 109 | < | for(i = 0; i < 3; i ++){ | 
| 110 | < | for(j = 0; j < 3; j++){ | 
| 111 | < | if( i == j) { | 
| 112 | < | eta[i][j] = oldEta[i][j] + dt2 *  instaVol * | 
| 113 | < | (press[i][j] - targetPressure/p_convert) / (NkBT*tb2); | 
| 114 | < | } else { | 
| 115 | < | eta[i][j] = oldEta[i][j] + dt2 * instaVol * press[i][j] / (NkBT*tb2); | 
| 115 | > | if (i == j) { | 
| 116 | > | vScale(i, j) += chi; | 
| 117 |  | } | 
| 118 |  | } | 
| 119 |  | } | 
| 120 |  | } | 
| 121 |  |  | 
| 122 | < | template<typename T> void NPTf<T>::calcVelScale(void){ | 
| 123 | < | int i,j; | 
| 123 | < |  | 
| 124 | < | for (i = 0; i < 3; i++ ) { | 
| 125 | < | for (j = 0; j < 3; j++ ) { | 
| 126 | < | vScale[i][j] = eta[i][j]; | 
| 127 | < |  | 
| 128 | < | if (i == j) { | 
| 129 | < | vScale[i][j] += chi; | 
| 130 | < | } | 
| 131 | < | } | 
| 132 | < | } | 
| 122 | > | void NPTf::getVelScaleA(Vector3d& sc, const Vector3d& vel){ | 
| 123 | > | sc = vScale * vel; | 
| 124 |  | } | 
| 125 |  |  | 
| 126 | < | template<typename T> void NPTf<T>::getVelScaleA(double sc[3], double vel[3]) { | 
| 127 | < |  | 
| 137 | < | matVecMul3( vScale, vel, sc ); | 
| 126 | > | void NPTf::getVelScaleB(Vector3d& sc, int index ) { | 
| 127 | > | sc = vScale * oldVel[index]; | 
| 128 |  | } | 
| 129 |  |  | 
| 130 | < | template<typename T> void NPTf<T>::getVelScaleB(double sc[3], int index ){ | 
| 141 | < | int j; | 
| 142 | < | double myVel[3]; | 
| 130 | > | void NPTf::getPosScale(const Vector3d& pos, const Vector3d& COM, int index, Vector3d& sc) { | 
| 131 |  |  | 
| 132 | < | for (j = 0; j < 3; j++) | 
| 133 | < | myVel[j] = oldVel[3*index + j]; | 
| 134 | < |  | 
| 147 | < | matVecMul3( vScale, myVel, sc ); | 
| 132 | > | /**@todo */ | 
| 133 | > | Vector3d rj = (oldPos[index] + pos)/2.0 -COM; | 
| 134 | > | sc = eta * rj; | 
| 135 |  | } | 
| 136 |  |  | 
| 137 | < | template<typename T> void NPTf<T>::getPosScale(double pos[3], double COM[3], | 
| 151 | < | int index, double sc[3]){ | 
| 152 | < | int j; | 
| 153 | < | double rj[3]; | 
| 137 | > | void NPTf::scaleSimBox(){ | 
| 138 |  |  | 
| 139 | < | for(j=0; j<3; j++) | 
| 140 | < | rj[j] = ( oldPos[index*3+j] + pos[j]) / 2.0 - COM[j]; | 
| 141 | < |  | 
| 142 | < | matVecMul3( eta, rj, sc ); | 
| 159 | < | } | 
| 160 | < |  | 
| 161 | < | template<typename T> void NPTf<T>::scaleSimBox( void ){ | 
| 162 | < |  | 
| 163 | < | int i,j,k; | 
| 164 | < | double scaleMat[3][3]; | 
| 139 | > | int i; | 
| 140 | > | int j; | 
| 141 | > | int k; | 
| 142 | > | Mat3x3d scaleMat; | 
| 143 |  | double eta2ij; | 
| 144 |  | double bigScale, smallScale, offDiagMax; | 
| 145 | < | double hm[3][3], hmnew[3][3]; | 
| 145 | > | Mat3x3d hm; | 
| 146 | > | Mat3x3d hmnew; | 
| 147 |  |  | 
| 148 |  |  | 
| 149 |  |  | 
| 164 |  |  | 
| 165 |  | eta2ij = 0.0; | 
| 166 |  | for(k=0; k<3; k++){ | 
| 167 | < | eta2ij += eta[i][k] * eta[k][j]; | 
| 167 | > | eta2ij += eta(i, k) * eta(k, j); | 
| 168 |  | } | 
| 169 |  |  | 
| 170 | < | scaleMat[i][j] = 0.0; | 
| 170 | > | scaleMat(i, j) = 0.0; | 
| 171 |  | // identity matrix (see above): | 
| 172 | < | if (i == j) scaleMat[i][j] = 1.0; | 
| 172 | > | if (i == j) scaleMat(i, j) = 1.0; | 
| 173 |  | // Taylor expansion for the exponential truncated at second order: | 
| 174 | < | scaleMat[i][j] += dt*eta[i][j]  + 0.5*dt*dt*eta2ij; | 
| 174 | > | scaleMat(i, j) += dt*eta(i, j)  + 0.5*dt*dt*eta2ij; | 
| 175 |  |  | 
| 176 |  |  | 
| 177 |  | if (i != j) | 
| 178 | < | if (fabs(scaleMat[i][j]) > offDiagMax) | 
| 179 | < | offDiagMax = fabs(scaleMat[i][j]); | 
| 178 | > | if (fabs(scaleMat(i, j)) > offDiagMax) | 
| 179 | > | offDiagMax = fabs(scaleMat(i, j)); | 
| 180 |  | } | 
| 181 |  |  | 
| 182 | < | if (scaleMat[i][i] > bigScale) bigScale = scaleMat[i][i]; | 
| 183 | < | if (scaleMat[i][i] < smallScale) smallScale = scaleMat[i][i]; | 
| 182 | > | if (scaleMat(i, i) > bigScale) bigScale = scaleMat(i, i); | 
| 183 | > | if (scaleMat(i, i) < smallScale) smallScale = scaleMat(i, i); | 
| 184 |  | } | 
| 185 |  |  | 
| 186 |  | if ((bigScale > 1.01) || (smallScale < 0.99)) { | 
| 193 |  | "      eta = [%lf\t%lf\t%lf]\n" | 
| 194 |  | "            [%lf\t%lf\t%lf]\n" | 
| 195 |  | "            [%lf\t%lf\t%lf]\n", | 
| 196 | < | scaleMat[0][0],scaleMat[0][1],scaleMat[0][2], | 
| 197 | < | scaleMat[1][0],scaleMat[1][1],scaleMat[1][2], | 
| 198 | < | scaleMat[2][0],scaleMat[2][1],scaleMat[2][2], | 
| 199 | < | eta[0][0],eta[0][1],eta[0][2], | 
| 200 | < | eta[1][0],eta[1][1],eta[1][2], | 
| 201 | < | eta[2][0],eta[2][1],eta[2][2]); | 
| 196 | > | scaleMat(0, 0),scaleMat(0, 1),scaleMat(0, 2), | 
| 197 | > | scaleMat(1, 0),scaleMat(1, 1),scaleMat(1, 2), | 
| 198 | > | scaleMat(2, 0),scaleMat(2, 1),scaleMat(2, 2), | 
| 199 | > | eta(0, 0),eta(0, 1),eta(0, 2), | 
| 200 | > | eta(1, 0),eta(1, 1),eta(1, 2), | 
| 201 | > | eta(2, 0),eta(2, 1),eta(2, 2)); | 
| 202 |  | painCave.isFatal = 1; | 
| 203 |  | simError(); | 
| 204 |  | } else if (offDiagMax > 0.01) { | 
| 211 |  | "      eta = [%lf\t%lf\t%lf]\n" | 
| 212 |  | "            [%lf\t%lf\t%lf]\n" | 
| 213 |  | "            [%lf\t%lf\t%lf]\n", | 
| 214 | < | scaleMat[0][0],scaleMat[0][1],scaleMat[0][2], | 
| 215 | < | scaleMat[1][0],scaleMat[1][1],scaleMat[1][2], | 
| 216 | < | scaleMat[2][0],scaleMat[2][1],scaleMat[2][2], | 
| 217 | < | eta[0][0],eta[0][1],eta[0][2], | 
| 218 | < | eta[1][0],eta[1][1],eta[1][2], | 
| 219 | < | eta[2][0],eta[2][1],eta[2][2]); | 
| 214 | > | scaleMat(0, 0),scaleMat(0, 1),scaleMat(0, 2), | 
| 215 | > | scaleMat(1, 0),scaleMat(1, 1),scaleMat(1, 2), | 
| 216 | > | scaleMat(2, 0),scaleMat(2, 1),scaleMat(2, 2), | 
| 217 | > | eta(0, 0),eta(0, 1),eta(0, 2), | 
| 218 | > | eta(1, 0),eta(1, 1),eta(1, 2), | 
| 219 | > | eta(2, 0),eta(2, 1),eta(2, 2)); | 
| 220 |  | painCave.isFatal = 1; | 
| 221 |  | simError(); | 
| 222 |  | } else { | 
| 223 | < | info->getBoxM(hm); | 
| 224 | < | matMul3(hm, scaleMat, hmnew); | 
| 225 | < | info->setBoxM(hmnew); | 
| 223 | > |  | 
| 224 | > | Mat3x3d hmat = currentSnapshot_->getHmat(); | 
| 225 | > | hmat = hmat *scaleMat; | 
| 226 | > | currentSnapshot_->setHmat(hmat); | 
| 227 | > |  | 
| 228 |  | } | 
| 229 |  | } | 
| 230 |  |  | 
| 231 | < | template<typename T> bool NPTf<T>::etaConverged() { | 
| 232 | < | int i; | 
| 233 | < | double diffEta, sumEta; | 
| 231 | > | bool NPTf::etaConverged() { | 
| 232 | > | int i; | 
| 233 | > | double diffEta, sumEta; | 
| 234 |  |  | 
| 235 | < | sumEta = 0; | 
| 236 | < | for(i = 0; i < 3; i++) | 
| 237 | < | sumEta += pow(prevEta[i][i] - eta[i][i], 2); | 
| 235 | > | sumEta = 0; | 
| 236 | > | for(i = 0; i < 3; i++) { | 
| 237 | > | sumEta += pow(prevEta(i, i) - eta(i, i), 2); | 
| 238 | > | } | 
| 239 | > |  | 
| 240 | > | diffEta = sqrt( sumEta / 3.0 ); | 
| 241 |  |  | 
| 242 | < | diffEta = sqrt( sumEta / 3.0 ); | 
| 259 | < |  | 
| 260 | < | return ( diffEta <= etaTolerance ); | 
| 242 | > | return ( diffEta <= etaTolerance ); | 
| 243 |  | } | 
| 244 |  |  | 
| 245 | < | template<typename T> double NPTf<T>::getConservedQuantity(void){ | 
| 245 | > | double NPTf::calcConservedQuantity(){ | 
| 246 |  |  | 
| 247 | < | double conservedQuantity; | 
| 248 | < | double totalEnergy; | 
| 249 | < | double thermostat_kinetic; | 
| 250 | < | double thermostat_potential; | 
| 251 | < | double barostat_kinetic; | 
| 252 | < | double barostat_potential; | 
| 253 | < | double trEta; | 
| 254 | < | double a[3][3], b[3][3]; | 
| 247 | > | chi= currentSnapshot_->getChi(); | 
| 248 | > | integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); | 
| 249 | > | loadEta(); | 
| 250 | > |  | 
| 251 | > | // We need NkBT a lot, so just set it here: This is the RAW number | 
| 252 | > | // of integrableObjects, so no subtraction or addition of constraints or | 
| 253 | > | // orientational degrees of freedom: | 
| 254 | > | NkBT = info_->getNGlobalIntegrableObjects()*OOPSEConstant::kB *targetTemp; | 
| 255 |  |  | 
| 256 | < | totalEnergy = tStats->getTotalE(); | 
| 256 | > | // fkBT is used because the thermostat operates on more degrees of freedom | 
| 257 | > | // than the barostat (when there are particles with orientational degrees | 
| 258 | > | // of freedom). | 
| 259 | > | fkBT = info_->getNdf()*OOPSEConstant::kB *targetTemp; | 
| 260 | > |  | 
| 261 | > | double conservedQuantity; | 
| 262 | > | double totalEnergy; | 
| 263 | > | double thermostat_kinetic; | 
| 264 | > | double thermostat_potential; | 
| 265 | > | double barostat_kinetic; | 
| 266 | > | double barostat_potential; | 
| 267 | > | double trEta; | 
| 268 |  |  | 
| 269 | < | thermostat_kinetic = fkBT * tt2 * chi * chi / | 
| 277 | < | (2.0 * eConvert); | 
| 269 | > | totalEnergy = thermo.getTotalE(); | 
| 270 |  |  | 
| 271 | < | thermostat_potential = fkBT* integralOfChidt / eConvert; | 
| 271 | > | thermostat_kinetic = fkBT * tt2 * chi * chi /(2.0 * OOPSEConstant::energyConvert); | 
| 272 |  |  | 
| 273 | < | transposeMat3(eta, a); | 
| 282 | < | matMul3(a, eta, b); | 
| 283 | < | trEta = matTrace3(b); | 
| 273 | > | thermostat_potential = fkBT* integralOfChidt / OOPSEConstant::energyConvert; | 
| 274 |  |  | 
| 275 | < | barostat_kinetic = NkBT * tb2 * trEta / | 
| 276 | < | (2.0 * eConvert); | 
| 275 | > | SquareMatrix<double, 3> tmp = eta.transpose() * eta; | 
| 276 | > | trEta = tmp.trace(); | 
| 277 | > |  | 
| 278 | > | barostat_kinetic = NkBT * tb2 * trEta /(2.0 * OOPSEConstant::energyConvert); | 
| 279 |  |  | 
| 280 | < | barostat_potential = (targetPressure * tStats->getVolume() / p_convert) / | 
| 289 | < | eConvert; | 
| 280 | > | barostat_potential = (targetPressure * thermo.getVolume() / OOPSEConstant::pressureConvert) /OOPSEConstant::energyConvert; | 
| 281 |  |  | 
| 282 | < | conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + | 
| 283 | < | barostat_kinetic + barostat_potential; | 
| 282 | > | conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + | 
| 283 | > | barostat_kinetic + barostat_potential; | 
| 284 |  |  | 
| 285 | < | return conservedQuantity; | 
| 285 | > | return conservedQuantity; | 
| 286 |  |  | 
| 287 |  | } | 
| 288 |  |  | 
| 289 | < | template<typename T> string NPTf<T>::getAdditionalParameters(void){ | 
| 290 | < | string parameters; | 
| 300 | < | const int BUFFERSIZE = 2000; // size of the read buffer | 
| 301 | < | char buffer[BUFFERSIZE]; | 
| 289 | > | void NPTf::loadEta() { | 
| 290 | > | eta= currentSnapshot_->getEta(); | 
| 291 |  |  | 
| 292 | < | sprintf(buffer,"\t%G\t%G;", chi, integralOfChidt); | 
| 293 | < | parameters += buffer; | 
| 292 | > | //if (!eta.isDiagonal()) { | 
| 293 | > | //    sprintf( painCave.errMsg, | 
| 294 | > | //             "NPTf error: the diagonal elements of eta matrix are not the same or etaMat is not a diagonal matrix"); | 
| 295 | > | //    painCave.isFatal = 1; | 
| 296 | > | //    simError(); | 
| 297 | > | //} | 
| 298 | > | } | 
| 299 |  |  | 
| 300 | < | for(int i = 0; i < 3; i++){ | 
| 301 | < | sprintf(buffer,"\t%G\t%G\t%G;", eta[i][0], eta[i][1], eta[i][2]); | 
| 302 | < | parameters += buffer; | 
| 309 | < | } | 
| 300 | > | void NPTf::saveEta() { | 
| 301 | > | currentSnapshot_->setEta(eta); | 
| 302 | > | } | 
| 303 |  |  | 
| 311 | – | return parameters; | 
| 312 | – |  | 
| 304 |  | } |