| 1 | gezelter | 246 | /* | 
| 2 |  |  | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 |  |  | * | 
| 4 |  |  | * The University of Notre Dame grants you ("Licensee") a | 
| 5 |  |  | * non-exclusive, royalty free, license to use, modify and | 
| 6 |  |  | * redistribute this software in source and binary code form, provided | 
| 7 |  |  | * that the following conditions are met: | 
| 8 |  |  | * | 
| 9 |  |  | * 1. Acknowledgement of the program authors must be made in any | 
| 10 |  |  | *    publication of scientific results based in part on use of the | 
| 11 |  |  | *    program.  An acceptable form of acknowledgement is citation of | 
| 12 |  |  | *    the article in which the program was described (Matthew | 
| 13 |  |  | *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 |  |  | *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 |  |  | *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 |  |  | *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 |  |  | * | 
| 18 |  |  | * 2. Redistributions of source code must retain the above copyright | 
| 19 |  |  | *    notice, this list of conditions and the following disclaimer. | 
| 20 |  |  | * | 
| 21 |  |  | * 3. Redistributions in binary form must reproduce the above copyright | 
| 22 |  |  | *    notice, this list of conditions and the following disclaimer in the | 
| 23 |  |  | *    documentation and/or other materials provided with the | 
| 24 |  |  | *    distribution. | 
| 25 |  |  | * | 
| 26 |  |  | * This software is provided "AS IS," without a warranty of any | 
| 27 |  |  | * kind. All express or implied conditions, representations and | 
| 28 |  |  | * warranties, including any implied warranty of merchantability, | 
| 29 |  |  | * fitness for a particular purpose or non-infringement, are hereby | 
| 30 |  |  | * excluded.  The University of Notre Dame and its licensors shall not | 
| 31 |  |  | * be liable for any damages suffered by licensee as a result of | 
| 32 |  |  | * using, modifying or distributing the software or its | 
| 33 |  |  | * derivatives. In no event will the University of Notre Dame or its | 
| 34 |  |  | * licensors be liable for any lost revenue, profit or data, or for | 
| 35 |  |  | * direct, indirect, special, consequential, incidental or punitive | 
| 36 |  |  | * damages, however caused and regardless of the theory of liability, | 
| 37 |  |  | * arising out of the use of or inability to use software, even if the | 
| 38 |  |  | * University of Notre Dame has been advised of the possibility of | 
| 39 |  |  | * such damages. | 
| 40 |  |  | */ | 
| 41 |  |  |  | 
| 42 |  |  | #include "NPTi.hpp" | 
| 43 | tim | 3 | #include "brains/SimInfo.hpp" | 
| 44 |  |  | #include "brains/Thermo.hpp" | 
| 45 | gezelter | 246 | #include "integrators/NPT.hpp" | 
| 46 |  |  | #include "primitives/Molecule.hpp" | 
| 47 |  |  | #include "utils/OOPSEConstant.hpp" | 
| 48 | tim | 3 | #include "utils/simError.h" | 
| 49 | gezelter | 2 |  | 
| 50 | gezelter | 246 | namespace oopse { | 
| 51 | gezelter | 2 |  | 
| 52 |  |  | // Basic isotropic thermostating and barostating via the Melchionna | 
| 53 |  |  | // modification of the Hoover algorithm: | 
| 54 |  |  | // | 
| 55 |  |  | //    Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, | 
| 56 |  |  | //       Molec. Phys., 78, 533. | 
| 57 |  |  | // | 
| 58 |  |  | //           and | 
| 59 |  |  | // | 
| 60 |  |  | //    Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. | 
| 61 |  |  |  | 
| 62 | gezelter | 246 | NPTi::NPTi ( SimInfo *info) : NPT(info){ | 
| 63 | gezelter | 2 |  | 
| 64 |  |  | } | 
| 65 |  |  |  | 
| 66 | gezelter | 246 | void NPTi::evolveEtaA() { | 
| 67 |  |  | eta += dt2 * ( instaVol * (instaPress - targetPressure) / | 
| 68 |  |  | (OOPSEConstant::pressureConvert*NkBT*tb2)); | 
| 69 |  |  | oldEta = eta; | 
| 70 | gezelter | 2 | } | 
| 71 |  |  |  | 
| 72 | gezelter | 246 | void NPTi::evolveEtaB() { | 
| 73 | gezelter | 2 |  | 
| 74 | gezelter | 246 | prevEta = eta; | 
| 75 |  |  | eta = oldEta + dt2 * ( instaVol * (instaPress - targetPressure) / | 
| 76 |  |  | (OOPSEConstant::pressureConvert*NkBT*tb2)); | 
| 77 | gezelter | 2 | } | 
| 78 |  |  |  | 
| 79 | gezelter | 246 | void NPTi::calcVelScale() { | 
| 80 |  |  | vScale = chi + eta; | 
| 81 | gezelter | 2 | } | 
| 82 |  |  |  | 
| 83 | gezelter | 246 | void NPTi::getVelScaleA(Vector3d& sc, const Vector3d& vel) { | 
| 84 |  |  | sc = vel * vScale; | 
| 85 | gezelter | 2 | } | 
| 86 |  |  |  | 
| 87 | gezelter | 246 | void NPTi::getVelScaleB(Vector3d& sc, int index ){ | 
| 88 |  |  | sc = oldVel[index] * vScale; | 
| 89 | gezelter | 2 | } | 
| 90 |  |  |  | 
| 91 |  |  |  | 
| 92 | gezelter | 246 | void NPTi::getPosScale(const Vector3d& pos, const Vector3d& COM, | 
| 93 |  |  | int index, Vector3d& sc){ | 
| 94 |  |  | /**@todo*/ | 
| 95 |  |  | sc  = (oldPos[index] + pos)/2.0 -COM; | 
| 96 |  |  | sc *= eta; | 
| 97 | gezelter | 2 | } | 
| 98 |  |  |  | 
| 99 | gezelter | 246 | void NPTi::scaleSimBox(){ | 
| 100 | gezelter | 2 |  | 
| 101 | gezelter | 246 | double scaleFactor; | 
| 102 | gezelter | 2 |  | 
| 103 | gezelter | 246 | scaleFactor = exp(dt*eta); | 
| 104 | gezelter | 2 |  | 
| 105 | gezelter | 246 | if ((scaleFactor > 1.1) || (scaleFactor < 0.9)) { | 
| 106 |  |  | sprintf( painCave.errMsg, | 
| 107 | gezelter | 2 | "NPTi error: Attempting a Box scaling of more than 10 percent" | 
| 108 |  |  | " check your tauBarostat, as it is probably too small!\n" | 
| 109 |  |  | " eta = %lf, scaleFactor = %lf\n", eta, scaleFactor | 
| 110 |  |  | ); | 
| 111 | gezelter | 246 | painCave.isFatal = 1; | 
| 112 |  |  | simError(); | 
| 113 |  |  | } else { | 
| 114 |  |  | Mat3x3d hmat = currentSnapshot_->getHmat(); | 
| 115 |  |  | hmat *= scaleFactor; | 
| 116 |  |  | currentSnapshot_->setHmat(hmat); | 
| 117 |  |  | } | 
| 118 | gezelter | 2 |  | 
| 119 |  |  | } | 
| 120 |  |  |  | 
| 121 | gezelter | 246 | bool NPTi::etaConverged() { | 
| 122 | gezelter | 2 |  | 
| 123 | gezelter | 246 | return ( fabs(prevEta - eta) <= etaTolerance ); | 
| 124 | gezelter | 2 | } | 
| 125 |  |  |  | 
| 126 | gezelter | 246 | double NPTi::calcConservedQuantity(){ | 
| 127 | gezelter | 2 |  | 
| 128 | gezelter | 246 | chi= currentSnapshot_->getChi(); | 
| 129 |  |  | integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); | 
| 130 |  |  | loadEta(); | 
| 131 |  |  | // We need NkBT a lot, so just set it here: This is the RAW number | 
| 132 |  |  | // of integrableObjects, so no subtraction or addition of constraints or | 
| 133 |  |  | // orientational degrees of freedom: | 
| 134 |  |  | NkBT = info_->getNGlobalIntegrableObjects()*OOPSEConstant::kB *targetTemp; | 
| 135 | gezelter | 2 |  | 
| 136 | gezelter | 246 | // fkBT is used because the thermostat operates on more degrees of freedom | 
| 137 |  |  | // than the barostat (when there are particles with orientational degrees | 
| 138 |  |  | // of freedom). | 
| 139 |  |  | fkBT = info_->getNdf()*OOPSEConstant::kB *targetTemp; | 
| 140 |  |  |  | 
| 141 |  |  | double conservedQuantity; | 
| 142 |  |  | double Energy; | 
| 143 |  |  | double thermostat_kinetic; | 
| 144 |  |  | double thermostat_potential; | 
| 145 |  |  | double barostat_kinetic; | 
| 146 |  |  | double barostat_potential; | 
| 147 | gezelter | 2 |  | 
| 148 | gezelter | 246 | Energy =thermo.getTotalE(); | 
| 149 | gezelter | 2 |  | 
| 150 | gezelter | 246 | thermostat_kinetic = fkBT* tt2 * chi * chi / (2.0 * OOPSEConstant::energyConvert); | 
| 151 | gezelter | 2 |  | 
| 152 | gezelter | 246 | thermostat_potential = fkBT* integralOfChidt / OOPSEConstant::energyConvert; | 
| 153 | gezelter | 2 |  | 
| 154 |  |  |  | 
| 155 | gezelter | 246 | barostat_kinetic = 3.0 * NkBT * tb2 * eta * eta /(2.0 * OOPSEConstant::energyConvert); | 
| 156 | gezelter | 2 |  | 
| 157 | gezelter | 246 | barostat_potential = (targetPressure * thermo.getVolume() / OOPSEConstant::pressureConvert) / | 
| 158 |  |  | OOPSEConstant::energyConvert; | 
| 159 | gezelter | 2 |  | 
| 160 | gezelter | 246 | conservedQuantity = Energy + thermostat_kinetic + thermostat_potential + | 
| 161 |  |  | barostat_kinetic + barostat_potential; | 
| 162 |  |  |  | 
| 163 |  |  | return conservedQuantity; | 
| 164 |  |  | } | 
| 165 | gezelter | 2 |  | 
| 166 | gezelter | 246 | void NPTi::loadEta() { | 
| 167 |  |  | Mat3x3d etaMat = currentSnapshot_->getEta(); | 
| 168 |  |  | eta = etaMat(0,0); | 
| 169 |  |  | //if (fabs(etaMat(1,1) - eta) >= oopse::epsilon || fabs(etaMat(1,1) - eta) >= oopse::epsilon || !etaMat.isDiagonal()) { | 
| 170 |  |  | //    sprintf( painCave.errMsg, | 
| 171 |  |  | //             "NPTi error: the diagonal elements of  eta matrix are not the same or etaMat is not a diagonal matrix"); | 
| 172 |  |  | //    painCave.isFatal = 1; | 
| 173 |  |  | //    simError(); | 
| 174 |  |  | //} | 
| 175 | gezelter | 2 | } | 
| 176 |  |  |  | 
| 177 | gezelter | 246 | void NPTi::saveEta() { | 
| 178 |  |  | Mat3x3d etaMat(0.0); | 
| 179 |  |  | etaMat(0, 0) = eta; | 
| 180 |  |  | etaMat(1, 1) = eta; | 
| 181 |  |  | etaMat(2, 2) = eta; | 
| 182 |  |  | currentSnapshot_->setEta(etaMat); | 
| 183 |  |  | } | 
| 184 | gezelter | 2 |  | 
| 185 |  |  | } |