| 1 |
/* |
| 2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
| 3 |
* |
| 4 |
* The University of Notre Dame grants you ("Licensee") a |
| 5 |
* non-exclusive, royalty free, license to use, modify and |
| 6 |
* redistribute this software in source and binary code form, provided |
| 7 |
* that the following conditions are met: |
| 8 |
* |
| 9 |
* 1. Acknowledgement of the program authors must be made in any |
| 10 |
* publication of scientific results based in part on use of the |
| 11 |
* program. An acceptable form of acknowledgement is citation of |
| 12 |
* the article in which the program was described (Matthew |
| 13 |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
| 14 |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
| 15 |
* Parallel Simulation Engine for Molecular Dynamics," |
| 16 |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
| 17 |
* |
| 18 |
* 2. Redistributions of source code must retain the above copyright |
| 19 |
* notice, this list of conditions and the following disclaimer. |
| 20 |
* |
| 21 |
* 3. Redistributions in binary form must reproduce the above copyright |
| 22 |
* notice, this list of conditions and the following disclaimer in the |
| 23 |
* documentation and/or other materials provided with the |
| 24 |
* distribution. |
| 25 |
* |
| 26 |
* This software is provided "AS IS," without a warranty of any |
| 27 |
* kind. All express or implied conditions, representations and |
| 28 |
* warranties, including any implied warranty of merchantability, |
| 29 |
* fitness for a particular purpose or non-infringement, are hereby |
| 30 |
* excluded. The University of Notre Dame and its licensors shall not |
| 31 |
* be liable for any damages suffered by licensee as a result of |
| 32 |
* using, modifying or distributing the software or its |
| 33 |
* derivatives. In no event will the University of Notre Dame or its |
| 34 |
* licensors be liable for any lost revenue, profit or data, or for |
| 35 |
* direct, indirect, special, consequential, incidental or punitive |
| 36 |
* damages, however caused and regardless of the theory of liability, |
| 37 |
* arising out of the use of or inability to use software, even if the |
| 38 |
* University of Notre Dame has been advised of the possibility of |
| 39 |
* such damages. |
| 40 |
*/ |
| 41 |
|
| 42 |
#include "NPTi.hpp" |
| 43 |
#include "brains/SimInfo.hpp" |
| 44 |
#include "brains/Thermo.hpp" |
| 45 |
#include "integrators/NPT.hpp" |
| 46 |
#include "primitives/Molecule.hpp" |
| 47 |
#include "utils/OOPSEConstant.hpp" |
| 48 |
#include "utils/simError.h" |
| 49 |
|
| 50 |
namespace oopse { |
| 51 |
|
| 52 |
// Basic isotropic thermostating and barostating via the Melchionna |
| 53 |
// modification of the Hoover algorithm: |
| 54 |
// |
| 55 |
// Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, |
| 56 |
// Molec. Phys., 78, 533. |
| 57 |
// |
| 58 |
// and |
| 59 |
// |
| 60 |
// Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. |
| 61 |
|
| 62 |
NPTi::NPTi ( SimInfo *info) : NPT(info){ |
| 63 |
|
| 64 |
} |
| 65 |
|
| 66 |
void NPTi::evolveEtaA() { |
| 67 |
eta += dt2 * ( instaVol * (instaPress - targetPressure) / |
| 68 |
(OOPSEConstant::pressureConvert*NkBT*tb2)); |
| 69 |
oldEta = eta; |
| 70 |
} |
| 71 |
|
| 72 |
void NPTi::evolveEtaB() { |
| 73 |
|
| 74 |
prevEta = eta; |
| 75 |
eta = oldEta + dt2 * ( instaVol * (instaPress - targetPressure) / |
| 76 |
(OOPSEConstant::pressureConvert*NkBT*tb2)); |
| 77 |
} |
| 78 |
|
| 79 |
void NPTi::calcVelScale() { |
| 80 |
vScale = chi + eta; |
| 81 |
} |
| 82 |
|
| 83 |
void NPTi::getVelScaleA(Vector3d& sc, const Vector3d& vel) { |
| 84 |
sc = vel * vScale; |
| 85 |
} |
| 86 |
|
| 87 |
void NPTi::getVelScaleB(Vector3d& sc, int index ){ |
| 88 |
sc = oldVel[index] * vScale; |
| 89 |
} |
| 90 |
|
| 91 |
|
| 92 |
void NPTi::getPosScale(const Vector3d& pos, const Vector3d& COM, |
| 93 |
int index, Vector3d& sc){ |
| 94 |
/**@todo*/ |
| 95 |
sc = (oldPos[index] + pos)/2.0 -COM; |
| 96 |
sc *= eta; |
| 97 |
} |
| 98 |
|
| 99 |
void NPTi::scaleSimBox(){ |
| 100 |
|
| 101 |
double scaleFactor; |
| 102 |
|
| 103 |
scaleFactor = exp(dt*eta); |
| 104 |
|
| 105 |
if ((scaleFactor > 1.1) || (scaleFactor < 0.9)) { |
| 106 |
sprintf( painCave.errMsg, |
| 107 |
"NPTi error: Attempting a Box scaling of more than 10 percent" |
| 108 |
" check your tauBarostat, as it is probably too small!\n" |
| 109 |
" eta = %lf, scaleFactor = %lf\n", eta, scaleFactor |
| 110 |
); |
| 111 |
painCave.isFatal = 1; |
| 112 |
simError(); |
| 113 |
} else { |
| 114 |
Mat3x3d hmat = currentSnapshot_->getHmat(); |
| 115 |
hmat *= scaleFactor; |
| 116 |
currentSnapshot_->setHmat(hmat); |
| 117 |
} |
| 118 |
|
| 119 |
} |
| 120 |
|
| 121 |
bool NPTi::etaConverged() { |
| 122 |
|
| 123 |
return ( fabs(prevEta - eta) <= etaTolerance ); |
| 124 |
} |
| 125 |
|
| 126 |
double NPTi::calcConservedQuantity(){ |
| 127 |
|
| 128 |
chi= currentSnapshot_->getChi(); |
| 129 |
integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); |
| 130 |
loadEta(); |
| 131 |
// We need NkBT a lot, so just set it here: This is the RAW number |
| 132 |
// of integrableObjects, so no subtraction or addition of constraints or |
| 133 |
// orientational degrees of freedom: |
| 134 |
NkBT = info_->getNGlobalIntegrableObjects()*OOPSEConstant::kB *targetTemp; |
| 135 |
|
| 136 |
// fkBT is used because the thermostat operates on more degrees of freedom |
| 137 |
// than the barostat (when there are particles with orientational degrees |
| 138 |
// of freedom). |
| 139 |
fkBT = info_->getNdf()*OOPSEConstant::kB *targetTemp; |
| 140 |
|
| 141 |
double conservedQuantity; |
| 142 |
double Energy; |
| 143 |
double thermostat_kinetic; |
| 144 |
double thermostat_potential; |
| 145 |
double barostat_kinetic; |
| 146 |
double barostat_potential; |
| 147 |
|
| 148 |
Energy =thermo.getTotalE(); |
| 149 |
|
| 150 |
thermostat_kinetic = fkBT* tt2 * chi * chi / (2.0 * OOPSEConstant::energyConvert); |
| 151 |
|
| 152 |
thermostat_potential = fkBT* integralOfChidt / OOPSEConstant::energyConvert; |
| 153 |
|
| 154 |
|
| 155 |
barostat_kinetic = 3.0 * NkBT * tb2 * eta * eta /(2.0 * OOPSEConstant::energyConvert); |
| 156 |
|
| 157 |
barostat_potential = (targetPressure * thermo.getVolume() / OOPSEConstant::pressureConvert) / |
| 158 |
OOPSEConstant::energyConvert; |
| 159 |
|
| 160 |
conservedQuantity = Energy + thermostat_kinetic + thermostat_potential + |
| 161 |
barostat_kinetic + barostat_potential; |
| 162 |
|
| 163 |
return conservedQuantity; |
| 164 |
} |
| 165 |
|
| 166 |
void NPTi::loadEta() { |
| 167 |
Mat3x3d etaMat = currentSnapshot_->getEta(); |
| 168 |
eta = etaMat(0,0); |
| 169 |
//if (fabs(etaMat(1,1) - eta) >= oopse::epsilon || fabs(etaMat(1,1) - eta) >= oopse::epsilon || !etaMat.isDiagonal()) { |
| 170 |
// sprintf( painCave.errMsg, |
| 171 |
// "NPTi error: the diagonal elements of eta matrix are not the same or etaMat is not a diagonal matrix"); |
| 172 |
// painCave.isFatal = 1; |
| 173 |
// simError(); |
| 174 |
//} |
| 175 |
} |
| 176 |
|
| 177 |
void NPTi::saveEta() { |
| 178 |
Mat3x3d etaMat(0.0); |
| 179 |
etaMat(0, 0) = eta; |
| 180 |
etaMat(1, 1) = eta; |
| 181 |
etaMat(2, 2) = eta; |
| 182 |
currentSnapshot_->setEta(etaMat); |
| 183 |
} |
| 184 |
} |