| 6 |
|
* redistribute this software in source and binary code form, provided |
| 7 |
|
* that the following conditions are met: |
| 8 |
|
* |
| 9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
| 10 |
< |
* publication of scientific results based in part on use of the |
| 11 |
< |
* program. An acceptable form of acknowledgement is citation of |
| 12 |
< |
* the article in which the program was described (Matthew |
| 13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
| 14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
| 15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
| 16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
| 17 |
< |
* |
| 18 |
< |
* 2. Redistributions of source code must retain the above copyright |
| 9 |
> |
* 1. Redistributions of source code must retain the above copyright |
| 10 |
|
* notice, this list of conditions and the following disclaimer. |
| 11 |
|
* |
| 12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
| 12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
| 13 |
|
* notice, this list of conditions and the following disclaimer in the |
| 14 |
|
* documentation and/or other materials provided with the |
| 15 |
|
* distribution. |
| 28 |
|
* arising out of the use of or inability to use software, even if the |
| 29 |
|
* University of Notre Dame has been advised of the possibility of |
| 30 |
|
* such damages. |
| 31 |
+ |
* |
| 32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
| 33 |
+ |
* research, please cite the appropriate papers when you publish your |
| 34 |
+ |
* work. Good starting points are: |
| 35 |
+ |
* |
| 36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
| 37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
| 38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
| 39 |
+ |
* [4] Vardeman & Gezelter, in progress (2009). |
| 40 |
|
*/ |
| 41 |
|
|
| 42 |
|
#include "NPTi.hpp" |
| 44 |
|
#include "brains/Thermo.hpp" |
| 45 |
|
#include "integrators/NPT.hpp" |
| 46 |
|
#include "primitives/Molecule.hpp" |
| 47 |
< |
#include "utils/OOPSEConstant.hpp" |
| 47 |
> |
#include "utils/PhysicalConstants.hpp" |
| 48 |
|
#include "utils/simError.h" |
| 49 |
|
|
| 50 |
< |
namespace oopse { |
| 50 |
> |
namespace OpenMD { |
| 51 |
|
|
| 52 |
|
// Basic isotropic thermostating and barostating via the Melchionna |
| 53 |
|
// modification of the Hoover algorithm: |
| 65 |
|
|
| 66 |
|
void NPTi::evolveEtaA() { |
| 67 |
|
eta += dt2 * ( instaVol * (instaPress - targetPressure) / |
| 68 |
< |
(OOPSEConstant::pressureConvert*NkBT*tb2)); |
| 68 |
> |
(PhysicalConstants::pressureConvert*NkBT*tb2)); |
| 69 |
|
oldEta = eta; |
| 70 |
|
} |
| 71 |
|
|
| 73 |
|
|
| 74 |
|
prevEta = eta; |
| 75 |
|
eta = oldEta + dt2 * ( instaVol * (instaPress - targetPressure) / |
| 76 |
< |
(OOPSEConstant::pressureConvert*NkBT*tb2)); |
| 76 |
> |
(PhysicalConstants::pressureConvert*NkBT*tb2)); |
| 77 |
|
} |
| 78 |
|
|
| 79 |
|
void NPTi::calcVelScale() { |
| 131 |
|
// We need NkBT a lot, so just set it here: This is the RAW number |
| 132 |
|
// of integrableObjects, so no subtraction or addition of constraints or |
| 133 |
|
// orientational degrees of freedom: |
| 134 |
< |
NkBT = info_->getNGlobalIntegrableObjects()*OOPSEConstant::kB *targetTemp; |
| 134 |
> |
NkBT = info_->getNGlobalIntegrableObjects()*PhysicalConstants::kB *targetTemp; |
| 135 |
|
|
| 136 |
|
// fkBT is used because the thermostat operates on more degrees of freedom |
| 137 |
|
// than the barostat (when there are particles with orientational degrees |
| 138 |
|
// of freedom). |
| 139 |
< |
fkBT = info_->getNdf()*OOPSEConstant::kB *targetTemp; |
| 139 |
> |
fkBT = info_->getNdf()*PhysicalConstants::kB *targetTemp; |
| 140 |
|
|
| 141 |
|
RealType conservedQuantity; |
| 142 |
|
RealType Energy; |
| 147 |
|
|
| 148 |
|
Energy =thermo.getTotalE(); |
| 149 |
|
|
| 150 |
< |
thermostat_kinetic = fkBT* tt2 * chi * chi / (2.0 * OOPSEConstant::energyConvert); |
| 150 |
> |
thermostat_kinetic = fkBT* tt2 * chi * chi / (2.0 * PhysicalConstants::energyConvert); |
| 151 |
|
|
| 152 |
< |
thermostat_potential = fkBT* integralOfChidt / OOPSEConstant::energyConvert; |
| 152 |
> |
thermostat_potential = fkBT* integralOfChidt / PhysicalConstants::energyConvert; |
| 153 |
|
|
| 154 |
|
|
| 155 |
< |
barostat_kinetic = 3.0 * NkBT * tb2 * eta * eta /(2.0 * OOPSEConstant::energyConvert); |
| 155 |
> |
barostat_kinetic = 3.0 * NkBT * tb2 * eta * eta /(2.0 * PhysicalConstants::energyConvert); |
| 156 |
|
|
| 157 |
< |
barostat_potential = (targetPressure * thermo.getVolume() / OOPSEConstant::pressureConvert) / |
| 158 |
< |
OOPSEConstant::energyConvert; |
| 157 |
> |
barostat_potential = (targetPressure * thermo.getVolume() / PhysicalConstants::pressureConvert) / |
| 158 |
> |
PhysicalConstants::energyConvert; |
| 159 |
|
|
| 160 |
|
conservedQuantity = Energy + thermostat_kinetic + thermostat_potential + |
| 161 |
|
barostat_kinetic + barostat_potential; |
| 166 |
|
void NPTi::loadEta() { |
| 167 |
|
Mat3x3d etaMat = currentSnapshot_->getEta(); |
| 168 |
|
eta = etaMat(0,0); |
| 169 |
< |
//if (fabs(etaMat(1,1) - eta) >= oopse::epsilon || fabs(etaMat(1,1) - eta) >= oopse::epsilon || !etaMat.isDiagonal()) { |
| 169 |
> |
//if (fabs(etaMat(1,1) - eta) >= OpenMD::epsilon || fabs(etaMat(1,1) - eta) >= OpenMD::epsilon || !etaMat.isDiagonal()) { |
| 170 |
|
// sprintf( painCave.errMsg, |
| 171 |
|
// "NPTi error: the diagonal elements of eta matrix are not the same or etaMat is not a diagonal matrix"); |
| 172 |
|
// painCave.isFatal = 1; |