| 1 | 
< | 
#include <math.h> | 
| 2 | 
< | 
#include "primitives/Atom.hpp" | 
| 3 | 
< | 
#include "primitives/SRI.hpp" | 
| 4 | 
< | 
#include "primitives/AbstractClasses.hpp" | 
| 1 | 
> | 
/* | 
| 2 | 
> | 
 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | 
> | 
 * | 
| 4 | 
> | 
 * The University of Notre Dame grants you ("Licensee") a | 
| 5 | 
> | 
 * non-exclusive, royalty free, license to use, modify and | 
| 6 | 
> | 
 * redistribute this software in source and binary code form, provided | 
| 7 | 
> | 
 * that the following conditions are met: | 
| 8 | 
> | 
 * | 
| 9 | 
> | 
 * 1. Acknowledgement of the program authors must be made in any | 
| 10 | 
> | 
 *    publication of scientific results based in part on use of the | 
| 11 | 
> | 
 *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | 
> | 
 *    the article in which the program was described (Matthew | 
| 13 | 
> | 
 *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | 
> | 
 *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | 
> | 
 *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | 
> | 
 *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | 
> | 
 * | 
| 18 | 
> | 
 * 2. Redistributions of source code must retain the above copyright | 
| 19 | 
> | 
 *    notice, this list of conditions and the following disclaimer. | 
| 20 | 
> | 
 * | 
| 21 | 
> | 
 * 3. Redistributions in binary form must reproduce the above copyright | 
| 22 | 
> | 
 *    notice, this list of conditions and the following disclaimer in the | 
| 23 | 
> | 
 *    documentation and/or other materials provided with the | 
| 24 | 
> | 
 *    distribution. | 
| 25 | 
> | 
 * | 
| 26 | 
> | 
 * This software is provided "AS IS," without a warranty of any | 
| 27 | 
> | 
 * kind. All express or implied conditions, representations and | 
| 28 | 
> | 
 * warranties, including any implied warranty of merchantability, | 
| 29 | 
> | 
 * fitness for a particular purpose or non-infringement, are hereby | 
| 30 | 
> | 
 * excluded.  The University of Notre Dame and its licensors shall not | 
| 31 | 
> | 
 * be liable for any damages suffered by licensee as a result of | 
| 32 | 
> | 
 * using, modifying or distributing the software or its | 
| 33 | 
> | 
 * derivatives. In no event will the University of Notre Dame or its | 
| 34 | 
> | 
 * licensors be liable for any lost revenue, profit or data, or for | 
| 35 | 
> | 
 * direct, indirect, special, consequential, incidental or punitive | 
| 36 | 
> | 
 * damages, however caused and regardless of the theory of liability, | 
| 37 | 
> | 
 * arising out of the use of or inability to use software, even if the | 
| 38 | 
> | 
 * University of Notre Dame has been advised of the possibility of | 
| 39 | 
> | 
 * such damages. | 
| 40 | 
> | 
 */ | 
| 41 | 
> | 
  | 
| 42 | 
> | 
#include "NPTi.hpp" | 
| 43 | 
  | 
#include "brains/SimInfo.hpp" | 
| 6 | 
– | 
#include "UseTheForce/ForceFields.hpp" | 
| 44 | 
  | 
#include "brains/Thermo.hpp" | 
| 45 | 
< | 
#include "io/ReadWrite.hpp" | 
| 46 | 
< | 
#include "integrators/Integrator.hpp" | 
| 45 | 
> | 
#include "integrators/NPT.hpp" | 
| 46 | 
> | 
#include "primitives/Molecule.hpp" | 
| 47 | 
> | 
#include "utils/OOPSEConstant.hpp" | 
| 48 | 
  | 
#include "utils/simError.h" | 
| 49 | 
  | 
 | 
| 50 | 
< | 
#ifdef IS_MPI | 
| 13 | 
< | 
#include "brains/mpiSimulation.hpp" | 
| 14 | 
< | 
#endif | 
| 50 | 
> | 
namespace oopse { | 
| 51 | 
  | 
 | 
| 52 | 
< | 
// Basic isotropic thermostating and barostating via the Melchionna | 
| 53 | 
< | 
// modification of the Hoover algorithm: | 
| 54 | 
< | 
// | 
| 55 | 
< | 
//    Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, | 
| 56 | 
< | 
//       Molec. Phys., 78, 533. | 
| 57 | 
< | 
// | 
| 58 | 
< | 
//           and | 
| 59 | 
< | 
// | 
| 60 | 
< | 
//    Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. | 
| 52 | 
> | 
  // Basic isotropic thermostating and barostating via the Melchionna | 
| 53 | 
> | 
  // modification of the Hoover algorithm: | 
| 54 | 
> | 
  // | 
| 55 | 
> | 
  //    Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, | 
| 56 | 
> | 
  //       Molec. Phys., 78, 533. | 
| 57 | 
> | 
  // | 
| 58 | 
> | 
  //           and | 
| 59 | 
> | 
  // | 
| 60 | 
> | 
  //    Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. | 
| 61 | 
  | 
 | 
| 62 | 
< | 
template<typename T> NPTi<T>::NPTi ( SimInfo *theInfo, ForceFields* the_ff): | 
| 27 | 
< | 
  T( theInfo, the_ff ) | 
| 28 | 
< | 
{ | 
| 29 | 
< | 
  GenericData* data; | 
| 30 | 
< | 
  DoubleArrayData * etaValue; | 
| 31 | 
< | 
  vector<double> etaArray; | 
| 62 | 
> | 
  NPTi::NPTi ( SimInfo *info) : NPT(info){ | 
| 63 | 
  | 
 | 
| 64 | 
< | 
  eta = 0.0; | 
| 34 | 
< | 
  oldEta = 0.0; | 
| 64 | 
> | 
  } | 
| 65 | 
  | 
 | 
| 66 | 
< | 
  if( theInfo->useInitXSstate ){ | 
| 67 | 
< | 
    // retrieve eta from simInfo if | 
| 68 | 
< | 
    data = info->getProperty(ETAVALUE_ID); | 
| 69 | 
< | 
    if(data){ | 
| 40 | 
< | 
      etaValue = dynamic_cast<DoubleArrayData*>(data); | 
| 41 | 
< | 
       | 
| 42 | 
< | 
      if(etaValue){ | 
| 43 | 
< | 
        etaArray = etaValue->getData(); | 
| 44 | 
< | 
        eta = etaArray[0]; | 
| 45 | 
< | 
        oldEta = eta; | 
| 46 | 
< | 
      } | 
| 47 | 
< | 
    } | 
| 66 | 
> | 
  void NPTi::evolveEtaA() { | 
| 67 | 
> | 
    eta += dt2 * ( instaVol * (instaPress - targetPressure) / | 
| 68 | 
> | 
                   (OOPSEConstant::pressureConvert*NkBT*tb2)); | 
| 69 | 
> | 
    oldEta = eta; | 
| 70 | 
  | 
  } | 
| 49 | 
– | 
} | 
| 71 | 
  | 
 | 
| 72 | 
< | 
template<typename T> NPTi<T>::~NPTi() { | 
| 52 | 
< | 
  //nothing for now | 
| 53 | 
< | 
} | 
| 72 | 
> | 
  void NPTi::evolveEtaB() { | 
| 73 | 
  | 
 | 
| 74 | 
< | 
template<typename T> void NPTi<T>::resetIntegrator() { | 
| 75 | 
< | 
  eta = 0.0; | 
| 76 | 
< | 
  T::resetIntegrator(); | 
| 77 | 
< | 
} | 
| 74 | 
> | 
    prevEta = eta; | 
| 75 | 
> | 
    eta = oldEta + dt2 * ( instaVol * (instaPress - targetPressure) / | 
| 76 | 
> | 
                           (OOPSEConstant::pressureConvert*NkBT*tb2)); | 
| 77 | 
> | 
  } | 
| 78 | 
  | 
 | 
| 79 | 
< | 
template<typename T> void NPTi<T>::evolveEtaA() { | 
| 80 | 
< | 
  eta += dt2 * ( instaVol * (instaPress - targetPressure) / | 
| 81 | 
< | 
                 (p_convert*NkBT*tb2)); | 
| 63 | 
< | 
  oldEta = eta; | 
| 64 | 
< | 
} | 
| 79 | 
> | 
  void NPTi::calcVelScale() { | 
| 80 | 
> | 
    vScale = chi + eta; | 
| 81 | 
> | 
  } | 
| 82 | 
  | 
 | 
| 83 | 
< | 
template<typename T> void NPTi<T>::evolveEtaB() { | 
| 83 | 
> | 
  void NPTi::getVelScaleA(Vector3d& sc, const Vector3d& vel) { | 
| 84 | 
> | 
    sc = vel * vScale; | 
| 85 | 
> | 
  } | 
| 86 | 
  | 
 | 
| 87 | 
< | 
  prevEta = eta; | 
| 88 | 
< | 
  eta = oldEta + dt2 * ( instaVol * (instaPress - targetPressure) / | 
| 89 | 
< | 
                 (p_convert*NkBT*tb2)); | 
| 71 | 
< | 
} | 
| 87 | 
> | 
  void NPTi::getVelScaleB(Vector3d& sc, int index ){ | 
| 88 | 
> | 
    sc = oldVel[index] * vScale;     | 
| 89 | 
> | 
  } | 
| 90 | 
  | 
 | 
| 73 | 
– | 
template<typename T> void NPTi<T>::calcVelScale(void) { | 
| 74 | 
– | 
  vScale = chi + eta; | 
| 75 | 
– | 
} | 
| 91 | 
  | 
 | 
| 92 | 
< | 
template<typename T> void NPTi<T>::getVelScaleA(double sc[3], double vel[3]) { | 
| 93 | 
< | 
  int i; | 
| 92 | 
> | 
  void NPTi::getPosScale(const Vector3d& pos, const Vector3d& COM, | 
| 93 | 
> | 
                         int index, Vector3d& sc){ | 
| 94 | 
> | 
    /**@todo*/ | 
| 95 | 
> | 
    sc  = (oldPos[index] + pos)/2.0 -COM; | 
| 96 | 
> | 
    sc *= eta; | 
| 97 | 
> | 
  } | 
| 98 | 
  | 
 | 
| 99 | 
< | 
  for(i=0; i<3; i++) sc[i] = vel[i] * vScale; | 
| 81 | 
< | 
} | 
| 99 | 
> | 
  void NPTi::scaleSimBox(){ | 
| 100 | 
  | 
 | 
| 101 | 
< | 
template<typename T> void NPTi<T>::getVelScaleB(double sc[3], int index ){ | 
| 84 | 
< | 
  int i; | 
| 101 | 
> | 
    double scaleFactor; | 
| 102 | 
  | 
 | 
| 103 | 
< | 
  for(i=0; i<3; i++) sc[i] = oldVel[index*3 + i] * vScale; | 
| 87 | 
< | 
} | 
| 103 | 
> | 
    scaleFactor = exp(dt*eta); | 
| 104 | 
  | 
 | 
| 105 | 
+ | 
    if ((scaleFactor > 1.1) || (scaleFactor < 0.9)) { | 
| 106 | 
+ | 
      sprintf( painCave.errMsg, | 
| 107 | 
+ | 
               "NPTi error: Attempting a Box scaling of more than 10 percent" | 
| 108 | 
+ | 
               " check your tauBarostat, as it is probably too small!\n" | 
| 109 | 
+ | 
               " eta = %lf, scaleFactor = %lf\n", eta, scaleFactor | 
| 110 | 
+ | 
               ); | 
| 111 | 
+ | 
      painCave.isFatal = 1; | 
| 112 | 
+ | 
      simError(); | 
| 113 | 
+ | 
    } else { | 
| 114 | 
+ | 
      Mat3x3d hmat = currentSnapshot_->getHmat(); | 
| 115 | 
+ | 
      hmat *= scaleFactor; | 
| 116 | 
+ | 
      currentSnapshot_->setHmat(hmat); | 
| 117 | 
+ | 
    } | 
| 118 | 
  | 
 | 
| 119 | 
< | 
template<typename T> void NPTi<T>::getPosScale(double pos[3], double COM[3], | 
| 91 | 
< | 
                                               int index, double sc[3]){ | 
| 92 | 
< | 
  int j; | 
| 119 | 
> | 
  } | 
| 120 | 
  | 
 | 
| 121 | 
< | 
  for(j=0; j<3; j++) | 
| 95 | 
< | 
    sc[j] = ( oldPos[index*3+j] + pos[j]) / 2.0 - COM[j]; | 
| 121 | 
> | 
  bool NPTi::etaConverged() { | 
| 122 | 
  | 
 | 
| 123 | 
< | 
  for(j=0; j<3; j++) | 
| 98 | 
< | 
    sc[j] *= eta; | 
| 99 | 
< | 
} | 
| 100 | 
< | 
 | 
| 101 | 
< | 
template<typename T> void NPTi<T>::scaleSimBox( void ){ | 
| 102 | 
< | 
 | 
| 103 | 
< | 
  double scaleFactor; | 
| 104 | 
< | 
 | 
| 105 | 
< | 
  scaleFactor = exp(dt*eta); | 
| 106 | 
< | 
 | 
| 107 | 
< | 
  if ((scaleFactor > 1.1) || (scaleFactor < 0.9)) { | 
| 108 | 
< | 
    sprintf( painCave.errMsg, | 
| 109 | 
< | 
             "NPTi error: Attempting a Box scaling of more than 10 percent" | 
| 110 | 
< | 
             " check your tauBarostat, as it is probably too small!\n" | 
| 111 | 
< | 
             " eta = %lf, scaleFactor = %lf\n", eta, scaleFactor | 
| 112 | 
< | 
             ); | 
| 113 | 
< | 
    painCave.isFatal = 1; | 
| 114 | 
< | 
    simError(); | 
| 115 | 
< | 
  } else { | 
| 116 | 
< | 
    info->scaleBox(scaleFactor); | 
| 123 | 
> | 
    return ( fabs(prevEta - eta) <= etaTolerance ); | 
| 124 | 
  | 
  } | 
| 125 | 
  | 
 | 
| 126 | 
< | 
} | 
| 126 | 
> | 
  double NPTi::calcConservedQuantity(){ | 
| 127 | 
  | 
 | 
| 128 | 
< | 
template<typename T> bool NPTi<T>::etaConverged() { | 
| 128 | 
> | 
    chi= currentSnapshot_->getChi(); | 
| 129 | 
> | 
    integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); | 
| 130 | 
> | 
    loadEta(); | 
| 131 | 
> | 
    // We need NkBT a lot, so just set it here: This is the RAW number | 
| 132 | 
> | 
    // of integrableObjects, so no subtraction or addition of constraints or | 
| 133 | 
> | 
    // orientational degrees of freedom: | 
| 134 | 
> | 
    NkBT = info_->getNGlobalIntegrableObjects()*OOPSEConstant::kB *targetTemp; | 
| 135 | 
  | 
 | 
| 136 | 
< | 
  return ( fabs(prevEta - eta) <= etaTolerance ); | 
| 137 | 
< | 
} | 
| 136 | 
> | 
    // fkBT is used because the thermostat operates on more degrees of freedom | 
| 137 | 
> | 
    // than the barostat (when there are particles with orientational degrees | 
| 138 | 
> | 
    // of freedom).   | 
| 139 | 
> | 
    fkBT = info_->getNdf()*OOPSEConstant::kB *targetTemp;     | 
| 140 | 
> | 
     | 
| 141 | 
> | 
    double conservedQuantity; | 
| 142 | 
> | 
    double Energy; | 
| 143 | 
> | 
    double thermostat_kinetic; | 
| 144 | 
> | 
    double thermostat_potential; | 
| 145 | 
> | 
    double barostat_kinetic; | 
| 146 | 
> | 
    double barostat_potential; | 
| 147 | 
  | 
 | 
| 148 | 
< | 
template<typename T> double NPTi<T>::getConservedQuantity(void){ | 
| 148 | 
> | 
    Energy =thermo.getTotalE(); | 
| 149 | 
  | 
 | 
| 150 | 
< | 
  double conservedQuantity; | 
| 129 | 
< | 
  double Energy; | 
| 130 | 
< | 
  double thermostat_kinetic; | 
| 131 | 
< | 
  double thermostat_potential; | 
| 132 | 
< | 
  double barostat_kinetic; | 
| 133 | 
< | 
  double barostat_potential; | 
| 150 | 
> | 
    thermostat_kinetic = fkBT* tt2 * chi * chi / (2.0 * OOPSEConstant::energyConvert); | 
| 151 | 
  | 
 | 
| 152 | 
< | 
  Energy = tStats->getTotalE(); | 
| 152 | 
> | 
    thermostat_potential = fkBT* integralOfChidt / OOPSEConstant::energyConvert; | 
| 153 | 
  | 
 | 
| 137 | 
– | 
  thermostat_kinetic = fkBT* tt2 * chi * chi / | 
| 138 | 
– | 
    (2.0 * eConvert); | 
| 154 | 
  | 
 | 
| 155 | 
< | 
  thermostat_potential = fkBT* integralOfChidt / eConvert; | 
| 155 | 
> | 
    barostat_kinetic = 3.0 * NkBT * tb2 * eta * eta /(2.0 * OOPSEConstant::energyConvert); | 
| 156 | 
  | 
 | 
| 157 | 
+ | 
    barostat_potential = (targetPressure * thermo.getVolume() / OOPSEConstant::pressureConvert) / | 
| 158 | 
+ | 
      OOPSEConstant::energyConvert; | 
| 159 | 
  | 
 | 
| 160 | 
< | 
  barostat_kinetic = 3.0 * NkBT * tb2 * eta * eta / | 
| 161 | 
< | 
    (2.0 * eConvert); | 
| 160 | 
> | 
    conservedQuantity = Energy + thermostat_kinetic + thermostat_potential + | 
| 161 | 
> | 
      barostat_kinetic + barostat_potential; | 
| 162 | 
> | 
     | 
| 163 | 
> | 
    return conservedQuantity; | 
| 164 | 
> | 
  } | 
| 165 | 
  | 
 | 
| 166 | 
< | 
  barostat_potential = (targetPressure * tStats->getVolume() / p_convert) / | 
| 167 | 
< | 
    eConvert; | 
| 166 | 
> | 
  void NPTi::loadEta() { | 
| 167 | 
> | 
    Mat3x3d etaMat = currentSnapshot_->getEta(); | 
| 168 | 
> | 
    eta = etaMat(0,0); | 
| 169 | 
> | 
    //if (fabs(etaMat(1,1) - eta) >= oopse::epsilon || fabs(etaMat(1,1) - eta) >= oopse::epsilon || !etaMat.isDiagonal()) { | 
| 170 | 
> | 
    //    sprintf( painCave.errMsg, | 
| 171 | 
> | 
    //             "NPTi error: the diagonal elements of  eta matrix are not the same or etaMat is not a diagonal matrix"); | 
| 172 | 
> | 
    //    painCave.isFatal = 1; | 
| 173 | 
> | 
    //    simError(); | 
| 174 | 
> | 
    //} | 
| 175 | 
> | 
  } | 
| 176 | 
  | 
 | 
| 177 | 
< | 
  conservedQuantity = Energy + thermostat_kinetic + thermostat_potential + | 
| 178 | 
< | 
    barostat_kinetic + barostat_potential; | 
| 179 | 
< | 
 | 
| 180 | 
< | 
//   cout.width(8); | 
| 181 | 
< | 
//   cout.precision(8); | 
| 182 | 
< | 
 | 
| 183 | 
< | 
//   cerr << info->getTime() << "\t" << Energy << "\t" << thermostat_kinetic << | 
| 156 | 
< | 
//       "\t" << thermostat_potential << "\t" << barostat_kinetic << | 
| 157 | 
< | 
//       "\t" << barostat_potential << "\t" << conservedQuantity << endl; | 
| 158 | 
< | 
  return conservedQuantity; | 
| 177 | 
> | 
  void NPTi::saveEta() { | 
| 178 | 
> | 
    Mat3x3d etaMat(0.0); | 
| 179 | 
> | 
    etaMat(0, 0) = eta; | 
| 180 | 
> | 
    etaMat(1, 1) = eta; | 
| 181 | 
> | 
    etaMat(2, 2) = eta; | 
| 182 | 
> | 
    currentSnapshot_->setEta(etaMat); | 
| 183 | 
> | 
  } | 
| 184 | 
  | 
} | 
| 160 | 
– | 
 | 
| 161 | 
– | 
template<typename T> string NPTi<T>::getAdditionalParameters(void){ | 
| 162 | 
– | 
  string parameters; | 
| 163 | 
– | 
  const int BUFFERSIZE = 2000; // size of the read buffer | 
| 164 | 
– | 
  char buffer[BUFFERSIZE]; | 
| 165 | 
– | 
 | 
| 166 | 
– | 
  sprintf(buffer,"\t%G\t%G;", chi, integralOfChidt); | 
| 167 | 
– | 
  parameters += buffer; | 
| 168 | 
– | 
 | 
| 169 | 
– | 
  sprintf(buffer,"\t%G\t0\t0;", eta); | 
| 170 | 
– | 
  parameters += buffer; | 
| 171 | 
– | 
 | 
| 172 | 
– | 
  sprintf(buffer,"\t0\t%G\t0;", eta); | 
| 173 | 
– | 
  parameters += buffer; | 
| 174 | 
– | 
 | 
| 175 | 
– | 
  sprintf(buffer,"\t0\t0\t%G;", eta); | 
| 176 | 
– | 
  parameters += buffer; | 
| 177 | 
– | 
 | 
| 178 | 
– | 
  return parameters; | 
| 179 | 
– | 
 | 
| 180 | 
– | 
} |