| 1 | /* | 
| 2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Redistributions of source code must retain the above copyright | 
| 10 | *    notice, this list of conditions and the following disclaimer. | 
| 11 | * | 
| 12 | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | *    notice, this list of conditions and the following disclaimer in the | 
| 14 | *    documentation and/or other materials provided with the | 
| 15 | *    distribution. | 
| 16 | * | 
| 17 | * This software is provided "AS IS," without a warranty of any | 
| 18 | * kind. All express or implied conditions, representations and | 
| 19 | * warranties, including any implied warranty of merchantability, | 
| 20 | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 | * be liable for any damages suffered by licensee as a result of | 
| 23 | * using, modifying or distributing the software or its | 
| 24 | * derivatives. In no event will the University of Notre Dame or its | 
| 25 | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 | * direct, indirect, special, consequential, incidental or punitive | 
| 27 | * damages, however caused and regardless of the theory of liability, | 
| 28 | * arising out of the use of or inability to use software, even if the | 
| 29 | * University of Notre Dame has been advised of the possibility of | 
| 30 | * such damages. | 
| 31 | * | 
| 32 | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | * research, please cite the appropriate papers when you publish your | 
| 34 | * work.  Good starting points are: | 
| 35 | * | 
| 36 | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). | 
| 39 | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | */ | 
| 42 |  | 
| 43 | #include "brains/SimInfo.hpp" | 
| 44 | #include "brains/Thermo.hpp" | 
| 45 | #include "integrators/IntegratorCreator.hpp" | 
| 46 | #include "integrators/NPTsz.hpp" | 
| 47 | #include "primitives/Molecule.hpp" | 
| 48 | #include "utils/PhysicalConstants.hpp" | 
| 49 | #include "utils/simError.h" | 
| 50 |  | 
| 51 | namespace OpenMD { | 
| 52 |  | 
| 53 | /** | 
| 54 | * There is no known conserved quantity for the NPTsz integrator, | 
| 55 | * but we still compute the equivalent quantity from a fully | 
| 56 | * flexible constant pressure integrator. | 
| 57 | */ | 
| 58 | RealType NPTsz::calcConservedQuantity(){ | 
| 59 |  | 
| 60 | thermostat = snap->getThermostat(); | 
| 61 | loadEta(); | 
| 62 |  | 
| 63 | // We need NkBT a lot, so just set it here: This is the RAW number | 
| 64 | // of integrableObjects, so no subtraction or addition of | 
| 65 | // constraints or orientational degrees of freedom: | 
| 66 | NkBT = info_->getNGlobalIntegrableObjects() * | 
| 67 | PhysicalConstants::kB * targetTemp; | 
| 68 |  | 
| 69 | // fkBT is used because the thermostat operates on more degrees of | 
| 70 | // freedom than the barostat (when there are particles with | 
| 71 | // orientational degrees of freedom). | 
| 72 | fkBT = info_->getNdf() * PhysicalConstants::kB * targetTemp; | 
| 73 |  | 
| 74 | RealType conservedQuantity; | 
| 75 | RealType totalEnergy; | 
| 76 | RealType thermostat_kinetic; | 
| 77 | RealType thermostat_potential; | 
| 78 | RealType barostat_kinetic; | 
| 79 | RealType barostat_potential; | 
| 80 | RealType trEta; | 
| 81 |  | 
| 82 | totalEnergy = thermo.getTotalEnergy(); | 
| 83 |  | 
| 84 | thermostat_kinetic = fkBT * tt2 * thermostat.first * thermostat.first / | 
| 85 | (2.0 * PhysicalConstants::energyConvert); | 
| 86 |  | 
| 87 | thermostat_potential = fkBT* thermostat.second / | 
| 88 | PhysicalConstants::energyConvert; | 
| 89 |  | 
| 90 | SquareMatrix<RealType, 3> tmp = eta.transpose() * eta; | 
| 91 | trEta = tmp.trace(); | 
| 92 |  | 
| 93 | barostat_kinetic = NkBT * tb2 * trEta / | 
| 94 | (2.0 * PhysicalConstants::energyConvert); | 
| 95 |  | 
| 96 | barostat_potential = (targetPressure * thermo.getVolume() / | 
| 97 | PhysicalConstants::pressureConvert) / | 
| 98 | PhysicalConstants::energyConvert; | 
| 99 |  | 
| 100 | conservedQuantity = totalEnergy + thermostat_kinetic + | 
| 101 | thermostat_potential + barostat_kinetic + barostat_potential; | 
| 102 |  | 
| 103 | return conservedQuantity; | 
| 104 | } | 
| 105 |  | 
| 106 |  | 
| 107 | void NPTsz::scaleSimBox(){ | 
| 108 |  | 
| 109 | int i, j; | 
| 110 | Mat3x3d scaleMat; | 
| 111 | RealType scaleFactor; | 
| 112 | RealType bigScale, smallScale; | 
| 113 | Mat3x3d hm; | 
| 114 | Mat3x3d hmnew; | 
| 115 |  | 
| 116 | // Scale the box after all the positions have been moved: | 
| 117 |  | 
| 118 | // Use a taylor expansion for eta products: | 
| 119 | //  Hmat = Hmat . exp(dt * etaMat) | 
| 120 | //  Hmat = Hmat . ( Ident + dt * etaMat  + dt^2 * etaMat*etaMat / 2) | 
| 121 |  | 
| 122 | bigScale = 1.0; | 
| 123 | smallScale = 1.0; | 
| 124 |  | 
| 125 | for(i=0; i<3; i++){ | 
| 126 | for(j=0; j<3; j++){ | 
| 127 | scaleMat(i, j) = 0.0; | 
| 128 | if(i==j) { | 
| 129 | scaleMat(i, j) = 1.0; | 
| 130 | } | 
| 131 | } | 
| 132 | } | 
| 133 |  | 
| 134 | // scale x & y together: | 
| 135 | scaleFactor = 0.5 * (exp(dt*eta(0,0)) + exp(dt*eta(1,1) ) ); | 
| 136 | scaleMat(0,0) = scaleFactor; | 
| 137 | scaleMat(1,1) = scaleFactor; | 
| 138 |  | 
| 139 | bigScale = scaleFactor; | 
| 140 | smallScale = scaleFactor; | 
| 141 |  | 
| 142 | // scale z separately | 
| 143 | scaleFactor = exp(dt * eta(2,2)); | 
| 144 | scaleMat(2,2) = scaleFactor; | 
| 145 | if (scaleFactor > bigScale) bigScale = scaleFactor; | 
| 146 | if (scaleFactor < smallScale) smallScale = scaleFactor; | 
| 147 |  | 
| 148 | if ((bigScale > 1.1) || (smallScale < 0.9)) { | 
| 149 | sprintf( painCave.errMsg, | 
| 150 | "NPTsz: Attempting a Box scaling of more than 10 percent.\n" | 
| 151 | "\tCheck your tauBarostat, as it is probably too small!\n\n" | 
| 152 | "\tscaleMat = [%lf\t%lf\t%lf]\n" | 
| 153 | "\t           [%lf\t%lf\t%lf]\n" | 
| 154 | "\t           [%lf\t%lf\t%lf]\n", | 
| 155 | scaleMat(0, 0),scaleMat(0, 1),scaleMat(0, 2), | 
| 156 | scaleMat(1, 0),scaleMat(1, 1),scaleMat(1, 2), | 
| 157 | scaleMat(2, 0),scaleMat(2, 1),scaleMat(2, 2)); | 
| 158 | painCave.severity = OPENMD_ERROR; | 
| 159 | painCave.isFatal = 1; | 
| 160 | simError(); | 
| 161 | } else { | 
| 162 |  | 
| 163 | Mat3x3d hmat = snap->getHmat(); | 
| 164 | hmat = hmat *scaleMat; | 
| 165 | snap->setHmat(hmat); | 
| 166 | } | 
| 167 | } | 
| 168 |  | 
| 169 | void NPTsz::loadEta() { | 
| 170 | eta= snap->getBarostat(); | 
| 171 | } | 
| 172 | } |