| 1 | gezelter | 507 | /* | 
| 2 | gezelter | 246 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 |  |  | * | 
| 4 |  |  | * The University of Notre Dame grants you ("Licensee") a | 
| 5 |  |  | * non-exclusive, royalty free, license to use, modify and | 
| 6 |  |  | * redistribute this software in source and binary code form, provided | 
| 7 |  |  | * that the following conditions are met: | 
| 8 |  |  | * | 
| 9 | gezelter | 1390 | * 1. Redistributions of source code must retain the above copyright | 
| 10 | gezelter | 246 | *    notice, this list of conditions and the following disclaimer. | 
| 11 |  |  | * | 
| 12 | gezelter | 1390 | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | gezelter | 246 | *    notice, this list of conditions and the following disclaimer in the | 
| 14 |  |  | *    documentation and/or other materials provided with the | 
| 15 |  |  | *    distribution. | 
| 16 |  |  | * | 
| 17 |  |  | * This software is provided "AS IS," without a warranty of any | 
| 18 |  |  | * kind. All express or implied conditions, representations and | 
| 19 |  |  | * warranties, including any implied warranty of merchantability, | 
| 20 |  |  | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 |  |  | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 |  |  | * be liable for any damages suffered by licensee as a result of | 
| 23 |  |  | * using, modifying or distributing the software or its | 
| 24 |  |  | * derivatives. In no event will the University of Notre Dame or its | 
| 25 |  |  | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 |  |  | * direct, indirect, special, consequential, incidental or punitive | 
| 27 |  |  | * damages, however caused and regardless of the theory of liability, | 
| 28 |  |  | * arising out of the use of or inability to use software, even if the | 
| 29 |  |  | * University of Notre Dame has been advised of the possibility of | 
| 30 |  |  | * such damages. | 
| 31 | gezelter | 1390 | * | 
| 32 |  |  | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 |  |  | * research, please cite the appropriate papers when you publish your | 
| 34 |  |  | * work.  Good starting points are: | 
| 35 |  |  | * | 
| 36 |  |  | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 |  |  | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 |  |  | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 | gezelter | 1782 | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 |  |  | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | gezelter | 246 | */ | 
| 42 |  |  |  | 
| 43 | tim | 3 | #include "brains/SimInfo.hpp" | 
| 44 |  |  | #include "brains/Thermo.hpp" | 
| 45 | gezelter | 246 | #include "integrators/IntegratorCreator.hpp" | 
| 46 |  |  | #include "integrators/NPTxyz.hpp" | 
| 47 |  |  | #include "primitives/Molecule.hpp" | 
| 48 | gezelter | 1390 | #include "utils/PhysicalConstants.hpp" | 
| 49 | tim | 3 | #include "utils/simError.h" | 
| 50 | gezelter | 2 |  | 
| 51 |  |  | // Basic non-isotropic thermostating and barostating via the Melchionna | 
| 52 |  |  | // modification of the Hoover algorithm: | 
| 53 |  |  | // | 
| 54 |  |  | //    Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, | 
| 55 |  |  | //       Molec. Phys., 78, 533. | 
| 56 |  |  | // | 
| 57 |  |  | //           and | 
| 58 |  |  | // | 
| 59 |  |  | //    Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. | 
| 60 |  |  |  | 
| 61 | gezelter | 1390 | namespace OpenMD { | 
| 62 | gezelter | 2 |  | 
| 63 | gezelter | 246 |  | 
| 64 | tim | 963 | RealType NPTxyz::calcConservedQuantity(){ | 
| 65 | gezelter | 1782 | thermostat = snap->getThermostat(); | 
| 66 |  |  | loadEta(); | 
| 67 | gezelter | 2 |  | 
| 68 | gezelter | 246 | // We need NkBT a lot, so just set it here: This is the RAW number | 
| 69 |  |  | // of integrableObjects, so no subtraction or addition of constraints or | 
| 70 |  |  | // orientational degrees of freedom: | 
| 71 | gezelter | 1390 | NkBT = info_->getNGlobalIntegrableObjects()*PhysicalConstants::kB *targetTemp; | 
| 72 | gezelter | 2 |  | 
| 73 | gezelter | 246 | // fkBT is used because the thermostat operates on more degrees of freedom | 
| 74 |  |  | // than the barostat (when there are particles with orientational degrees | 
| 75 |  |  | // of freedom). | 
| 76 | gezelter | 1390 | fkBT = info_->getNdf()*PhysicalConstants::kB *targetTemp; | 
| 77 | gezelter | 2 |  | 
| 78 | tim | 963 | RealType conservedQuantity; | 
| 79 |  |  | RealType totalEnergy; | 
| 80 |  |  | RealType thermostat_kinetic; | 
| 81 |  |  | RealType thermostat_potential; | 
| 82 |  |  | RealType barostat_kinetic; | 
| 83 |  |  | RealType barostat_potential; | 
| 84 |  |  | RealType trEta; | 
| 85 | gezelter | 2 |  | 
| 86 | gezelter | 1782 | totalEnergy = thermo.getTotalEnergy(); | 
| 87 | gezelter | 2 |  | 
| 88 | gezelter | 1782 | thermostat_kinetic = fkBT * tt2 * thermostat.first * thermostat.first | 
| 89 |  |  | / (2.0 * PhysicalConstants::energyConvert); | 
| 90 | gezelter | 2 |  | 
| 91 | gezelter | 1782 | thermostat_potential = fkBT* thermostat.second | 
| 92 |  |  | / PhysicalConstants::energyConvert; | 
| 93 | gezelter | 2 |  | 
| 94 | tim | 963 | SquareMatrix<RealType, 3> tmp = eta.transpose() * eta; | 
| 95 | gezelter | 246 | trEta = tmp.trace(); | 
| 96 | gezelter | 2 |  | 
| 97 | gezelter | 1390 | barostat_kinetic = NkBT * tb2 * trEta /(2.0 * PhysicalConstants::energyConvert); | 
| 98 | gezelter | 2 |  | 
| 99 | gezelter | 1390 | barostat_potential = (targetPressure * thermo.getVolume() / PhysicalConstants::pressureConvert) /PhysicalConstants::energyConvert; | 
| 100 | gezelter | 2 |  | 
| 101 | gezelter | 246 | conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + | 
| 102 | gezelter | 507 | barostat_kinetic + barostat_potential; | 
| 103 | gezelter | 2 |  | 
| 104 |  |  |  | 
| 105 | gezelter | 246 | return conservedQuantity; | 
| 106 | gezelter | 2 |  | 
| 107 | gezelter | 507 | } | 
| 108 | gezelter | 2 |  | 
| 109 | gezelter | 246 |  | 
| 110 | gezelter | 507 | void NPTxyz::scaleSimBox(){ | 
| 111 | gezelter | 2 |  | 
| 112 | gezelter | 1782 | int i, j; | 
| 113 | gezelter | 246 | Mat3x3d scaleMat; | 
| 114 | gezelter | 1782 | RealType scaleFactor; | 
| 115 | tim | 963 | RealType bigScale, smallScale, offDiagMax; | 
| 116 | gezelter | 246 | Mat3x3d hm; | 
| 117 |  |  | Mat3x3d hmnew; | 
| 118 | gezelter | 2 |  | 
| 119 | gezelter | 507 | // Scale the box after all the positions have been moved: | 
| 120 | gezelter | 2 |  | 
| 121 | gezelter | 507 | // Use a taylor expansion for eta products:  Hmat = Hmat . exp(dt * etaMat) | 
| 122 |  |  | //  Hmat = Hmat . ( Ident + dt * etaMat  + dt^2 * etaMat*etaMat / 2) | 
| 123 | gezelter | 2 |  | 
| 124 | gezelter | 246 | bigScale = 1.0; | 
| 125 |  |  | smallScale = 1.0; | 
| 126 |  |  | offDiagMax = 0.0; | 
| 127 | gezelter | 2 |  | 
| 128 | gezelter | 246 | for(i=0; i<3; i++){ | 
| 129 | gezelter | 507 | for(j=0; j<3; j++){ | 
| 130 |  |  | scaleMat(i, j) = 0.0; | 
| 131 |  |  | if(i==j) { | 
| 132 |  |  | scaleMat(i, j) = 1.0; | 
| 133 |  |  | } | 
| 134 |  |  | } | 
| 135 | gezelter | 2 | } | 
| 136 |  |  |  | 
| 137 | gezelter | 246 | for(i=0;i<3;i++){ | 
| 138 | gezelter | 2 |  | 
| 139 | gezelter | 507 | // calculate the scaleFactors | 
| 140 | gezelter | 2 |  | 
| 141 | gezelter | 507 | scaleFactor = exp(dt*eta(i, i)); | 
| 142 | gezelter | 2 |  | 
| 143 | gezelter | 507 | scaleMat(i, i) = scaleFactor; | 
| 144 | gezelter | 2 |  | 
| 145 | gezelter | 507 | if (scaleMat(i, i) > bigScale) { | 
| 146 |  |  | bigScale = scaleMat(i, i); | 
| 147 |  |  | } | 
| 148 | gezelter | 246 |  | 
| 149 | gezelter | 507 | if (scaleMat(i, i) < smallScale) { | 
| 150 |  |  | smallScale = scaleMat(i, i); | 
| 151 |  |  | } | 
| 152 | gezelter | 246 | } | 
| 153 | gezelter | 2 |  | 
| 154 | gezelter | 246 | if ((bigScale > 1.1) || (smallScale < 0.9)) { | 
| 155 | gezelter | 507 | sprintf( painCave.errMsg, | 
| 156 |  |  | "NPTxyz error: Attempting a Box scaling of more than 10 percent.\n" | 
| 157 |  |  | " Check your tauBarostat, as it is probably too small!\n\n" | 
| 158 |  |  | " scaleMat = [%lf\t%lf\t%lf]\n" | 
| 159 |  |  | "            [%lf\t%lf\t%lf]\n" | 
| 160 |  |  | "            [%lf\t%lf\t%lf]\n", | 
| 161 |  |  | scaleMat(0, 0),scaleMat(0, 1),scaleMat(0, 2), | 
| 162 |  |  | scaleMat(1, 0),scaleMat(1, 1),scaleMat(1, 2), | 
| 163 |  |  | scaleMat(2, 0),scaleMat(2, 1),scaleMat(2, 2)); | 
| 164 |  |  | painCave.isFatal = 1; | 
| 165 |  |  | simError(); | 
| 166 | gezelter | 246 | } else { | 
| 167 | gezelter | 2 |  | 
| 168 | gezelter | 1782 | Mat3x3d hmat = snap->getHmat(); | 
| 169 | gezelter | 507 | hmat = hmat *scaleMat; | 
| 170 | gezelter | 1782 | snap->setHmat(hmat); | 
| 171 | gezelter | 246 | } | 
| 172 | gezelter | 507 | } | 
| 173 | gezelter | 2 |  | 
| 174 | gezelter | 507 | void NPTxyz::loadEta() { | 
| 175 | gezelter | 1782 | eta= snap->getBarostat(); | 
| 176 | gezelter | 507 | } | 
| 177 | gezelter | 2 |  | 
| 178 |  |  | } |