| 6 | 
  | 
 * redistribute this software in source and binary code form, provided | 
| 7 | 
  | 
 * that the following conditions are met: | 
| 8 | 
  | 
 * | 
| 9 | 
< | 
 * 1. Acknowledgement of the program authors must be made in any | 
| 10 | 
< | 
 *    publication of scientific results based in part on use of the | 
| 11 | 
< | 
 *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | 
< | 
 *    the article in which the program was described (Matthew | 
| 13 | 
< | 
 *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | 
< | 
 *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | 
< | 
 *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | 
< | 
 *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | 
< | 
 * | 
| 18 | 
< | 
 * 2. Redistributions of source code must retain the above copyright | 
| 9 | 
> | 
 * 1. Redistributions of source code must retain the above copyright | 
| 10 | 
  | 
 *    notice, this list of conditions and the following disclaimer. | 
| 11 | 
  | 
 * | 
| 12 | 
< | 
 * 3. Redistributions in binary form must reproduce the above copyright | 
| 12 | 
> | 
 * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | 
  | 
 *    notice, this list of conditions and the following disclaimer in the | 
| 14 | 
  | 
 *    documentation and/or other materials provided with the | 
| 15 | 
  | 
 *    distribution. | 
| 28 | 
  | 
 * arising out of the use of or inability to use software, even if the | 
| 29 | 
  | 
 * University of Notre Dame has been advised of the possibility of | 
| 30 | 
  | 
 * such damages. | 
| 31 | 
+ | 
 * | 
| 32 | 
+ | 
 * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | 
+ | 
 * research, please cite the appropriate papers when you publish your | 
| 34 | 
+ | 
 * work.  Good starting points are: | 
| 35 | 
+ | 
 *                                                                       | 
| 36 | 
+ | 
 * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).              | 
| 37 | 
+ | 
 * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).           | 
| 38 | 
+ | 
 * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).           | 
| 39 | 
+ | 
 * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | 
+ | 
 * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | 
  | 
 */ | 
| 42 | 
  | 
  | 
| 43 | 
  | 
#include "brains/SimInfo.hpp" | 
| 45 | 
  | 
#include "integrators/IntegratorCreator.hpp" | 
| 46 | 
  | 
#include "integrators/NPTxyz.hpp" | 
| 47 | 
  | 
#include "primitives/Molecule.hpp" | 
| 48 | 
< | 
#include "utils/OOPSEConstant.hpp" | 
| 48 | 
> | 
#include "utils/PhysicalConstants.hpp" | 
| 49 | 
  | 
#include "utils/simError.h" | 
| 50 | 
  | 
 | 
| 51 | 
  | 
// Basic non-isotropic thermostating and barostating via the Melchionna | 
| 58 | 
  | 
// | 
| 59 | 
  | 
//    Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. | 
| 60 | 
  | 
 | 
| 61 | 
< | 
namespace oopse { | 
| 61 | 
> | 
namespace OpenMD { | 
| 62 | 
  | 
 | 
| 63 | 
  | 
     | 
| 64 | 
  | 
  RealType NPTxyz::calcConservedQuantity(){ | 
| 65 | 
+ | 
    thermostat = snap->getThermostat(); | 
| 66 | 
+ | 
    loadEta(); | 
| 67 | 
  | 
 | 
| 68 | 
  | 
    // We need NkBT a lot, so just set it here: This is the RAW number | 
| 69 | 
  | 
    // of integrableObjects, so no subtraction or addition of constraints or | 
| 70 | 
  | 
    // orientational degrees of freedom: | 
| 71 | 
< | 
    NkBT = info_->getNGlobalIntegrableObjects()*OOPSEConstant::kB *targetTemp; | 
| 71 | 
> | 
    NkBT = info_->getNGlobalIntegrableObjects()*PhysicalConstants::kB *targetTemp; | 
| 72 | 
  | 
 | 
| 73 | 
  | 
    // fkBT is used because the thermostat operates on more degrees of freedom | 
| 74 | 
  | 
    // than the barostat (when there are particles with orientational degrees | 
| 75 | 
  | 
    // of freedom).   | 
| 76 | 
< | 
    fkBT = info_->getNdf()*OOPSEConstant::kB *targetTemp;         | 
| 76 | 
> | 
    fkBT = info_->getNdf()*PhysicalConstants::kB *targetTemp;         | 
| 77 | 
  | 
 | 
| 78 | 
  | 
    RealType conservedQuantity; | 
| 79 | 
  | 
    RealType totalEnergy; | 
| 83 | 
  | 
    RealType barostat_potential; | 
| 84 | 
  | 
    RealType trEta; | 
| 85 | 
  | 
 | 
| 86 | 
< | 
    totalEnergy = thermo.getTotalE(); | 
| 86 | 
> | 
    totalEnergy = thermo.getTotalEnergy(); | 
| 87 | 
  | 
 | 
| 88 | 
< | 
    thermostat_kinetic = fkBT * tt2 * chi * chi /(2.0 * OOPSEConstant::energyConvert); | 
| 88 | 
> | 
    thermostat_kinetic = fkBT * tt2 * thermostat.first * thermostat.first  | 
| 89 | 
> | 
      / (2.0 * PhysicalConstants::energyConvert); | 
| 90 | 
  | 
 | 
| 91 | 
< | 
    thermostat_potential = fkBT* integralOfChidt / OOPSEConstant::energyConvert; | 
| 91 | 
> | 
    thermostat_potential = fkBT* thermostat.second  | 
| 92 | 
> | 
      / PhysicalConstants::energyConvert; | 
| 93 | 
  | 
 | 
| 94 | 
  | 
    SquareMatrix<RealType, 3> tmp = eta.transpose() * eta; | 
| 95 | 
  | 
    trEta = tmp.trace(); | 
| 96 | 
  | 
 | 
| 97 | 
< | 
    barostat_kinetic = NkBT * tb2 * trEta /(2.0 * OOPSEConstant::energyConvert); | 
| 97 | 
> | 
    barostat_kinetic = NkBT * tb2 * trEta /(2.0 * PhysicalConstants::energyConvert); | 
| 98 | 
  | 
 | 
| 99 | 
< | 
    barostat_potential = (targetPressure * thermo.getVolume() / OOPSEConstant::pressureConvert) /OOPSEConstant::energyConvert; | 
| 99 | 
> | 
    barostat_potential = (targetPressure * thermo.getVolume() / PhysicalConstants::pressureConvert) /PhysicalConstants::energyConvert; | 
| 100 | 
  | 
 | 
| 101 | 
  | 
    conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + | 
| 102 | 
  | 
      barostat_kinetic + barostat_potential; | 
| 109 | 
  | 
     | 
| 110 | 
  | 
  void NPTxyz::scaleSimBox(){ | 
| 111 | 
  | 
 | 
| 112 | 
< | 
    int i,j,k; | 
| 112 | 
> | 
    int i, j; | 
| 113 | 
  | 
    Mat3x3d scaleMat; | 
| 114 | 
< | 
    RealType eta2ij, scaleFactor; | 
| 114 | 
> | 
    RealType scaleFactor; | 
| 115 | 
  | 
    RealType bigScale, smallScale, offDiagMax; | 
| 116 | 
  | 
    Mat3x3d hm; | 
| 117 | 
  | 
    Mat3x3d hmnew; | 
| 118 | 
  | 
 | 
| 114 | 
– | 
 | 
| 115 | 
– | 
 | 
| 119 | 
  | 
    // Scale the box after all the positions have been moved: | 
| 120 | 
  | 
 | 
| 121 | 
  | 
    // Use a taylor expansion for eta products:  Hmat = Hmat . exp(dt * etaMat) | 
| 165 | 
  | 
      simError(); | 
| 166 | 
  | 
    } else { | 
| 167 | 
  | 
 | 
| 168 | 
< | 
      Mat3x3d hmat = currentSnapshot_->getHmat(); | 
| 168 | 
> | 
      Mat3x3d hmat = snap->getHmat(); | 
| 169 | 
  | 
      hmat = hmat *scaleMat; | 
| 170 | 
< | 
      currentSnapshot_->setHmat(hmat); | 
| 170 | 
> | 
      snap->setHmat(hmat); | 
| 171 | 
  | 
    } | 
| 172 | 
  | 
  } | 
| 173 | 
  | 
 | 
| 174 | 
  | 
  void NPTxyz::loadEta() { | 
| 175 | 
< | 
    eta= currentSnapshot_->getEta(); | 
| 175 | 
> | 
    eta= snap->getBarostat(); | 
| 176 | 
  | 
  } | 
| 177 | 
  | 
 | 
| 178 | 
  | 
} |