| 1 | /* | 
| 2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Acknowledgement of the program authors must be made in any | 
| 10 | *    publication of scientific results based in part on use of the | 
| 11 | *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | *    the article in which the program was described (Matthew | 
| 13 | *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | * | 
| 18 | * 2. Redistributions of source code must retain the above copyright | 
| 19 | *    notice, this list of conditions and the following disclaimer. | 
| 20 | * | 
| 21 | * 3. Redistributions in binary form must reproduce the above copyright | 
| 22 | *    notice, this list of conditions and the following disclaimer in the | 
| 23 | *    documentation and/or other materials provided with the | 
| 24 | *    distribution. | 
| 25 | * | 
| 26 | * This software is provided "AS IS," without a warranty of any | 
| 27 | * kind. All express or implied conditions, representations and | 
| 28 | * warranties, including any implied warranty of merchantability, | 
| 29 | * fitness for a particular purpose or non-infringement, are hereby | 
| 30 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 31 | * be liable for any damages suffered by licensee as a result of | 
| 32 | * using, modifying or distributing the software or its | 
| 33 | * derivatives. In no event will the University of Notre Dame or its | 
| 34 | * licensors be liable for any lost revenue, profit or data, or for | 
| 35 | * direct, indirect, special, consequential, incidental or punitive | 
| 36 | * damages, however caused and regardless of the theory of liability, | 
| 37 | * arising out of the use of or inability to use software, even if the | 
| 38 | * University of Notre Dame has been advised of the possibility of | 
| 39 | * such damages. | 
| 40 | */ | 
| 41 |  | 
| 42 | #include "brains/SimInfo.hpp" | 
| 43 | #include "brains/Thermo.hpp" | 
| 44 | #include "integrators/IntegratorCreator.hpp" | 
| 45 | #include "integrators/NPTxyz.hpp" | 
| 46 | #include "primitives/Molecule.hpp" | 
| 47 | #include "utils/OOPSEConstant.hpp" | 
| 48 | #include "utils/simError.h" | 
| 49 |  | 
| 50 | // Basic non-isotropic thermostating and barostating via the Melchionna | 
| 51 | // modification of the Hoover algorithm: | 
| 52 | // | 
| 53 | //    Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, | 
| 54 | //       Molec. Phys., 78, 533. | 
| 55 | // | 
| 56 | //           and | 
| 57 | // | 
| 58 | //    Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. | 
| 59 |  | 
| 60 | namespace oopse { | 
| 61 |  | 
| 62 |  | 
| 63 | RealType NPTxyz::calcConservedQuantity(){ | 
| 64 |  | 
| 65 | // We need NkBT a lot, so just set it here: This is the RAW number | 
| 66 | // of integrableObjects, so no subtraction or addition of constraints or | 
| 67 | // orientational degrees of freedom: | 
| 68 | NkBT = info_->getNGlobalIntegrableObjects()*OOPSEConstant::kB *targetTemp; | 
| 69 |  | 
| 70 | // fkBT is used because the thermostat operates on more degrees of freedom | 
| 71 | // than the barostat (when there are particles with orientational degrees | 
| 72 | // of freedom). | 
| 73 | fkBT = info_->getNdf()*OOPSEConstant::kB *targetTemp; | 
| 74 |  | 
| 75 | RealType conservedQuantity; | 
| 76 | RealType totalEnergy; | 
| 77 | RealType thermostat_kinetic; | 
| 78 | RealType thermostat_potential; | 
| 79 | RealType barostat_kinetic; | 
| 80 | RealType barostat_potential; | 
| 81 | RealType trEta; | 
| 82 |  | 
| 83 | totalEnergy = thermo.getTotalE(); | 
| 84 |  | 
| 85 | thermostat_kinetic = fkBT * tt2 * chi * chi /(2.0 * OOPSEConstant::energyConvert); | 
| 86 |  | 
| 87 | thermostat_potential = fkBT* integralOfChidt / OOPSEConstant::energyConvert; | 
| 88 |  | 
| 89 | SquareMatrix<RealType, 3> tmp = eta.transpose() * eta; | 
| 90 | trEta = tmp.trace(); | 
| 91 |  | 
| 92 | barostat_kinetic = NkBT * tb2 * trEta /(2.0 * OOPSEConstant::energyConvert); | 
| 93 |  | 
| 94 | barostat_potential = (targetPressure * thermo.getVolume() / OOPSEConstant::pressureConvert) /OOPSEConstant::energyConvert; | 
| 95 |  | 
| 96 | conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + | 
| 97 | barostat_kinetic + barostat_potential; | 
| 98 |  | 
| 99 |  | 
| 100 | return conservedQuantity; | 
| 101 |  | 
| 102 | } | 
| 103 |  | 
| 104 |  | 
| 105 | void NPTxyz::scaleSimBox(){ | 
| 106 |  | 
| 107 | int i,j,k; | 
| 108 | Mat3x3d scaleMat; | 
| 109 | RealType eta2ij, scaleFactor; | 
| 110 | RealType bigScale, smallScale, offDiagMax; | 
| 111 | Mat3x3d hm; | 
| 112 | Mat3x3d hmnew; | 
| 113 |  | 
| 114 |  | 
| 115 |  | 
| 116 | // Scale the box after all the positions have been moved: | 
| 117 |  | 
| 118 | // Use a taylor expansion for eta products:  Hmat = Hmat . exp(dt * etaMat) | 
| 119 | //  Hmat = Hmat . ( Ident + dt * etaMat  + dt^2 * etaMat*etaMat / 2) | 
| 120 |  | 
| 121 | bigScale = 1.0; | 
| 122 | smallScale = 1.0; | 
| 123 | offDiagMax = 0.0; | 
| 124 |  | 
| 125 | for(i=0; i<3; i++){ | 
| 126 | for(j=0; j<3; j++){ | 
| 127 | scaleMat(i, j) = 0.0; | 
| 128 | if(i==j) { | 
| 129 | scaleMat(i, j) = 1.0; | 
| 130 | } | 
| 131 | } | 
| 132 | } | 
| 133 |  | 
| 134 | for(i=0;i<3;i++){ | 
| 135 |  | 
| 136 | // calculate the scaleFactors | 
| 137 |  | 
| 138 | scaleFactor = exp(dt*eta(i, i)); | 
| 139 |  | 
| 140 | scaleMat(i, i) = scaleFactor; | 
| 141 |  | 
| 142 | if (scaleMat(i, i) > bigScale) { | 
| 143 | bigScale = scaleMat(i, i); | 
| 144 | } | 
| 145 |  | 
| 146 | if (scaleMat(i, i) < smallScale) { | 
| 147 | smallScale = scaleMat(i, i); | 
| 148 | } | 
| 149 | } | 
| 150 |  | 
| 151 | if ((bigScale > 1.1) || (smallScale < 0.9)) { | 
| 152 | sprintf( painCave.errMsg, | 
| 153 | "NPTxyz error: Attempting a Box scaling of more than 10 percent.\n" | 
| 154 | " Check your tauBarostat, as it is probably too small!\n\n" | 
| 155 | " scaleMat = [%lf\t%lf\t%lf]\n" | 
| 156 | "            [%lf\t%lf\t%lf]\n" | 
| 157 | "            [%lf\t%lf\t%lf]\n", | 
| 158 | scaleMat(0, 0),scaleMat(0, 1),scaleMat(0, 2), | 
| 159 | scaleMat(1, 0),scaleMat(1, 1),scaleMat(1, 2), | 
| 160 | scaleMat(2, 0),scaleMat(2, 1),scaleMat(2, 2)); | 
| 161 | painCave.isFatal = 1; | 
| 162 | simError(); | 
| 163 | } else { | 
| 164 |  | 
| 165 | Mat3x3d hmat = currentSnapshot_->getHmat(); | 
| 166 | hmat = hmat *scaleMat; | 
| 167 | currentSnapshot_->setHmat(hmat); | 
| 168 | } | 
| 169 | } | 
| 170 |  | 
| 171 | void NPTxyz::loadEta() { | 
| 172 | eta= currentSnapshot_->getEta(); | 
| 173 | } | 
| 174 |  | 
| 175 | } |