| 1 | 
< | 
#include <math.h> | 
| 2 | 
< | 
#include "math/MatVec3.h" | 
| 3 | 
< | 
#include "primitives/Atom.hpp" | 
| 4 | 
< | 
#include "primitives/SRI.hpp" | 
| 5 | 
< | 
#include "primitives/AbstractClasses.hpp" | 
| 1 | 
> | 
/* | 
| 2 | 
> | 
 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | 
> | 
 * | 
| 4 | 
> | 
 * The University of Notre Dame grants you ("Licensee") a | 
| 5 | 
> | 
 * non-exclusive, royalty free, license to use, modify and | 
| 6 | 
> | 
 * redistribute this software in source and binary code form, provided | 
| 7 | 
> | 
 * that the following conditions are met: | 
| 8 | 
> | 
 * | 
| 9 | 
> | 
 * 1. Acknowledgement of the program authors must be made in any | 
| 10 | 
> | 
 *    publication of scientific results based in part on use of the | 
| 11 | 
> | 
 *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | 
> | 
 *    the article in which the program was described (Matthew | 
| 13 | 
> | 
 *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | 
> | 
 *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | 
> | 
 *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | 
> | 
 *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | 
> | 
 * | 
| 18 | 
> | 
 * 2. Redistributions of source code must retain the above copyright | 
| 19 | 
> | 
 *    notice, this list of conditions and the following disclaimer. | 
| 20 | 
> | 
 * | 
| 21 | 
> | 
 * 3. Redistributions in binary form must reproduce the above copyright | 
| 22 | 
> | 
 *    notice, this list of conditions and the following disclaimer in the | 
| 23 | 
> | 
 *    documentation and/or other materials provided with the | 
| 24 | 
> | 
 *    distribution. | 
| 25 | 
> | 
 * | 
| 26 | 
> | 
 * This software is provided "AS IS," without a warranty of any | 
| 27 | 
> | 
 * kind. All express or implied conditions, representations and | 
| 28 | 
> | 
 * warranties, including any implied warranty of merchantability, | 
| 29 | 
> | 
 * fitness for a particular purpose or non-infringement, are hereby | 
| 30 | 
> | 
 * excluded.  The University of Notre Dame and its licensors shall not | 
| 31 | 
> | 
 * be liable for any damages suffered by licensee as a result of | 
| 32 | 
> | 
 * using, modifying or distributing the software or its | 
| 33 | 
> | 
 * derivatives. In no event will the University of Notre Dame or its | 
| 34 | 
> | 
 * licensors be liable for any lost revenue, profit or data, or for | 
| 35 | 
> | 
 * direct, indirect, special, consequential, incidental or punitive | 
| 36 | 
> | 
 * damages, however caused and regardless of the theory of liability, | 
| 37 | 
> | 
 * arising out of the use of or inability to use software, even if the | 
| 38 | 
> | 
 * University of Notre Dame has been advised of the possibility of | 
| 39 | 
> | 
 * such damages. | 
| 40 | 
> | 
 */ | 
| 41 | 
> | 
  | 
| 42 | 
  | 
#include "brains/SimInfo.hpp" | 
| 7 | 
– | 
#include "UseTheForce/ForceFields.hpp" | 
| 43 | 
  | 
#include "brains/Thermo.hpp" | 
| 44 | 
< | 
#include "io/ReadWrite.hpp" | 
| 45 | 
< | 
#include "integrators/Integrator.hpp" | 
| 44 | 
> | 
#include "integrators/IntegratorCreator.hpp" | 
| 45 | 
> | 
#include "integrators/NPTxyz.hpp" | 
| 46 | 
> | 
#include "primitives/Molecule.hpp" | 
| 47 | 
> | 
#include "utils/OOPSEConstant.hpp" | 
| 48 | 
  | 
#include "utils/simError.h" | 
| 49 | 
  | 
 | 
| 13 | 
– | 
#ifdef IS_MPI | 
| 14 | 
– | 
#include "brains/mpiSimulation.hpp" | 
| 15 | 
– | 
#endif | 
| 16 | 
– | 
 | 
| 50 | 
  | 
// Basic non-isotropic thermostating and barostating via the Melchionna | 
| 51 | 
  | 
// modification of the Hoover algorithm: | 
| 52 | 
  | 
// | 
| 57 | 
  | 
// | 
| 58 | 
  | 
//    Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. | 
| 59 | 
  | 
 | 
| 60 | 
< | 
template<typename T> NPTxyz<T>::NPTxyz ( SimInfo *theInfo, ForceFields* the_ff): | 
| 28 | 
< | 
  T( theInfo, the_ff ) | 
| 29 | 
< | 
{ | 
| 30 | 
< | 
  GenericData* data; | 
| 31 | 
< | 
  DoubleArrayData * etaValue; | 
| 32 | 
< | 
  vector<double> etaArray; | 
| 33 | 
< | 
  int i,j; | 
| 60 | 
> | 
namespace oopse { | 
| 61 | 
  | 
 | 
| 62 | 
< | 
  for(i = 0; i < 3; i++){ | 
| 63 | 
< | 
    for (j = 0; j < 3; j++){ | 
| 62 | 
> | 
     | 
| 63 | 
> | 
  double NPTxyz::calcConservedQuantity(){ | 
| 64 | 
  | 
 | 
| 65 | 
< | 
      eta[i][j] = 0.0; | 
| 66 | 
< | 
      oldEta[i][j] = 0.0; | 
| 67 | 
< | 
    } | 
| 68 | 
< | 
  } | 
| 65 | 
> | 
    // We need NkBT a lot, so just set it here: This is the RAW number | 
| 66 | 
> | 
    // of integrableObjects, so no subtraction or addition of constraints or | 
| 67 | 
> | 
    // orientational degrees of freedom: | 
| 68 | 
> | 
    NkBT = info_->getNGlobalIntegrableObjects()*OOPSEConstant::kB *targetTemp; | 
| 69 | 
  | 
 | 
| 70 | 
+ | 
    // fkBT is used because the thermostat operates on more degrees of freedom | 
| 71 | 
+ | 
    // than the barostat (when there are particles with orientational degrees | 
| 72 | 
+ | 
    // of freedom).   | 
| 73 | 
+ | 
    fkBT = info_->getNdf()*OOPSEConstant::kB *targetTemp;         | 
| 74 | 
  | 
 | 
| 75 | 
< | 
  if( theInfo->useInitXSstate ){ | 
| 75 | 
> | 
    double conservedQuantity; | 
| 76 | 
> | 
    double totalEnergy; | 
| 77 | 
> | 
    double thermostat_kinetic; | 
| 78 | 
> | 
    double thermostat_potential; | 
| 79 | 
> | 
    double barostat_kinetic; | 
| 80 | 
> | 
    double barostat_potential; | 
| 81 | 
> | 
    double trEta; | 
| 82 | 
  | 
 | 
| 83 | 
< | 
    // retrieve eta array from simInfo if it exists | 
| 47 | 
< | 
    data = info->getProperty(ETAVALUE_ID); | 
| 48 | 
< | 
    if(data){ | 
| 49 | 
< | 
      etaValue = dynamic_cast<DoubleArrayData*>(data); | 
| 50 | 
< | 
       | 
| 51 | 
< | 
      if(etaValue){ | 
| 52 | 
< | 
        etaArray = etaValue->getData(); | 
| 53 | 
< | 
         | 
| 54 | 
< | 
        for(i = 0; i < 3; i++){ | 
| 55 | 
< | 
          for (j = 0; j < 3; j++){ | 
| 56 | 
< | 
            eta[i][j] = etaArray[3*i+j]; | 
| 57 | 
< | 
            oldEta[i][j] = eta[i][j]; | 
| 58 | 
< | 
          } | 
| 59 | 
< | 
        } | 
| 60 | 
< | 
      } | 
| 61 | 
< | 
    } | 
| 62 | 
< | 
  } | 
| 63 | 
< | 
} | 
| 83 | 
> | 
    totalEnergy = thermo.getTotalE(); | 
| 84 | 
  | 
 | 
| 85 | 
< | 
template<typename T> NPTxyz<T>::~NPTxyz() { | 
| 85 | 
> | 
    thermostat_kinetic = fkBT * tt2 * chi * chi /(2.0 * OOPSEConstant::energyConvert); | 
| 86 | 
  | 
 | 
| 87 | 
< | 
  // empty for now | 
| 68 | 
< | 
} | 
| 87 | 
> | 
    thermostat_potential = fkBT* integralOfChidt / OOPSEConstant::energyConvert; | 
| 88 | 
  | 
 | 
| 89 | 
< | 
template<typename T> void NPTxyz<T>::resetIntegrator() { | 
| 89 | 
> | 
    SquareMatrix<double, 3> tmp = eta.transpose() * eta; | 
| 90 | 
> | 
    trEta = tmp.trace(); | 
| 91 | 
  | 
 | 
| 92 | 
< | 
  int i, j; | 
| 92 | 
> | 
    barostat_kinetic = NkBT * tb2 * trEta /(2.0 * OOPSEConstant::energyConvert); | 
| 93 | 
  | 
 | 
| 94 | 
< | 
  for(i = 0; i < 3; i++) | 
| 75 | 
< | 
    for (j = 0; j < 3; j++) | 
| 76 | 
< | 
      eta[i][j] = 0.0; | 
| 94 | 
> | 
    barostat_potential = (targetPressure * thermo.getVolume() / OOPSEConstant::pressureConvert) /OOPSEConstant::energyConvert; | 
| 95 | 
  | 
 | 
| 96 | 
< | 
  T::resetIntegrator(); | 
| 97 | 
< | 
} | 
| 96 | 
> | 
    conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + | 
| 97 | 
> | 
      barostat_kinetic + barostat_potential; | 
| 98 | 
  | 
 | 
| 81 | 
– | 
template<typename T> void NPTxyz<T>::evolveEtaA() { | 
| 99 | 
  | 
 | 
| 100 | 
< | 
  int i, j; | 
| 100 | 
> | 
    return conservedQuantity; | 
| 101 | 
  | 
 | 
| 85 | 
– | 
  for(i = 0; i < 3; i ++){ | 
| 86 | 
– | 
    for(j = 0; j < 3; j++){ | 
| 87 | 
– | 
      if( i == j) | 
| 88 | 
– | 
        eta[i][j] += dt2 *  instaVol * | 
| 89 | 
– | 
          (press[i][j] - targetPressure/p_convert) / (NkBT*tb2); | 
| 90 | 
– | 
      else | 
| 91 | 
– | 
        eta[i][j] = 0.0; | 
| 92 | 
– | 
    } | 
| 102 | 
  | 
  } | 
| 103 | 
  | 
 | 
| 104 | 
< | 
  for(i = 0; i < 3; i++) | 
| 105 | 
< | 
    for (j = 0; j < 3; j++) | 
| 97 | 
< | 
      oldEta[i][j] = eta[i][j]; | 
| 98 | 
< | 
} | 
| 104 | 
> | 
     | 
| 105 | 
> | 
  void NPTxyz::scaleSimBox(){ | 
| 106 | 
  | 
 | 
| 107 | 
< | 
template<typename T> void NPTxyz<T>::evolveEtaB() { | 
| 107 | 
> | 
    int i,j,k; | 
| 108 | 
> | 
    Mat3x3d scaleMat; | 
| 109 | 
> | 
    double eta2ij, scaleFactor; | 
| 110 | 
> | 
    double bigScale, smallScale, offDiagMax; | 
| 111 | 
> | 
    Mat3x3d hm; | 
| 112 | 
> | 
    Mat3x3d hmnew; | 
| 113 | 
  | 
 | 
| 102 | 
– | 
  int i,j; | 
| 114 | 
  | 
 | 
| 104 | 
– | 
  for(i = 0; i < 3; i++) | 
| 105 | 
– | 
    for (j = 0; j < 3; j++) | 
| 106 | 
– | 
      prevEta[i][j] = eta[i][j]; | 
| 115 | 
  | 
 | 
| 116 | 
< | 
  for(i = 0; i < 3; i ++){ | 
| 109 | 
< | 
    for(j = 0; j < 3; j++){ | 
| 110 | 
< | 
      if( i == j) { | 
| 111 | 
< | 
        eta[i][j] = oldEta[i][j] + dt2 *  instaVol * | 
| 112 | 
< | 
          (press[i][j] - targetPressure/p_convert) / (NkBT*tb2); | 
| 113 | 
< | 
      } else { | 
| 114 | 
< | 
        eta[i][j] = 0.0; | 
| 115 | 
< | 
      } | 
| 116 | 
< | 
    } | 
| 117 | 
< | 
  } | 
| 118 | 
< | 
} | 
| 116 | 
> | 
    // Scale the box after all the positions have been moved: | 
| 117 | 
  | 
 | 
| 118 | 
< | 
template<typename T> void NPTxyz<T>::calcVelScale(void) { | 
| 119 | 
< | 
  int i,j; | 
| 118 | 
> | 
    // Use a taylor expansion for eta products:  Hmat = Hmat . exp(dt * etaMat) | 
| 119 | 
> | 
    //  Hmat = Hmat . ( Ident + dt * etaMat  + dt^2 * etaMat*etaMat / 2) | 
| 120 | 
  | 
 | 
| 121 | 
< | 
  for (i = 0; i < 3; i++ ) { | 
| 122 | 
< | 
    for (j = 0; j < 3; j++ ) { | 
| 123 | 
< | 
      vScale[i][j] = eta[i][j]; | 
| 121 | 
> | 
    bigScale = 1.0; | 
| 122 | 
> | 
    smallScale = 1.0; | 
| 123 | 
> | 
    offDiagMax = 0.0; | 
| 124 | 
  | 
 | 
| 125 | 
< | 
      if (i == j) { | 
| 126 | 
< | 
        vScale[i][j] += chi; | 
| 125 | 
> | 
    for(i=0; i<3; i++){ | 
| 126 | 
> | 
      for(j=0; j<3; j++){ | 
| 127 | 
> | 
        scaleMat(i, j) = 0.0; | 
| 128 | 
> | 
        if(i==j) { | 
| 129 | 
> | 
          scaleMat(i, j) = 1.0; | 
| 130 | 
> | 
        } | 
| 131 | 
  | 
      } | 
| 132 | 
  | 
    } | 
| 131 | 
– | 
  } | 
| 132 | 
– | 
} | 
| 133 | 
  | 
 | 
| 134 | 
< | 
template<typename T> void NPTxyz<T>::getVelScaleA(double sc[3], double vel[3]) { | 
| 135 | 
< | 
  matVecMul3( vScale, vel, sc ); | 
| 136 | 
< | 
} | 
| 134 | 
> | 
    for(i=0;i<3;i++){ | 
| 135 | 
  | 
 | 
| 136 | 
< | 
template<typename T> void NPTxyz<T>::getVelScaleB(double sc[3], int index ){ | 
| 139 | 
< | 
  int j; | 
| 140 | 
< | 
  double myVel[3]; | 
| 136 | 
> | 
      // calculate the scaleFactors | 
| 137 | 
  | 
 | 
| 138 | 
< | 
  for (j = 0; j < 3; j++) | 
| 143 | 
< | 
    myVel[j] = oldVel[3*index + j]; | 
| 138 | 
> | 
      scaleFactor = exp(dt*eta(i, i)); | 
| 139 | 
  | 
 | 
| 140 | 
< | 
  matVecMul3( vScale, myVel, sc ); | 
| 146 | 
< | 
} | 
| 140 | 
> | 
      scaleMat(i, i) = scaleFactor; | 
| 141 | 
  | 
 | 
| 142 | 
< | 
template<typename T> void NPTxyz<T>::getPosScale(double pos[3], double COM[3], | 
| 143 | 
< | 
                                               int index, double sc[3]){ | 
| 144 | 
< | 
  int j; | 
| 145 | 
< | 
  double rj[3]; | 
| 142 | 
> | 
      if (scaleMat(i, i) > bigScale) { | 
| 143 | 
> | 
        bigScale = scaleMat(i, i); | 
| 144 | 
> | 
      } | 
| 145 | 
> | 
         | 
| 146 | 
> | 
      if (scaleMat(i, i) < smallScale) { | 
| 147 | 
> | 
        smallScale = scaleMat(i, i); | 
| 148 | 
> | 
      } | 
| 149 | 
> | 
    } | 
| 150 | 
  | 
 | 
| 151 | 
< | 
  for(j=0; j<3; j++) | 
| 152 | 
< | 
    rj[j] = ( oldPos[index*3+j] + pos[j]) / 2.0 - COM[j]; | 
| 151 | 
> | 
    if ((bigScale > 1.1) || (smallScale < 0.9)) { | 
| 152 | 
> | 
      sprintf( painCave.errMsg, | 
| 153 | 
> | 
               "NPTxyz error: Attempting a Box scaling of more than 10 percent.\n" | 
| 154 | 
> | 
               " Check your tauBarostat, as it is probably too small!\n\n" | 
| 155 | 
> | 
               " scaleMat = [%lf\t%lf\t%lf]\n" | 
| 156 | 
> | 
               "            [%lf\t%lf\t%lf]\n" | 
| 157 | 
> | 
               "            [%lf\t%lf\t%lf]\n", | 
| 158 | 
> | 
               scaleMat(0, 0),scaleMat(0, 1),scaleMat(0, 2), | 
| 159 | 
> | 
               scaleMat(1, 0),scaleMat(1, 1),scaleMat(1, 2), | 
| 160 | 
> | 
               scaleMat(2, 0),scaleMat(2, 1),scaleMat(2, 2)); | 
| 161 | 
> | 
      painCave.isFatal = 1; | 
| 162 | 
> | 
      simError(); | 
| 163 | 
> | 
    } else { | 
| 164 | 
  | 
 | 
| 165 | 
< | 
  matVecMul3( eta, rj, sc ); | 
| 166 | 
< | 
} | 
| 167 | 
< | 
 | 
| 159 | 
< | 
template<typename T> void NPTxyz<T>::scaleSimBox( void ){ | 
| 160 | 
< | 
 | 
| 161 | 
< | 
  int i,j,k; | 
| 162 | 
< | 
  double scaleMat[3][3]; | 
| 163 | 
< | 
  double eta2ij, scaleFactor; | 
| 164 | 
< | 
  double bigScale, smallScale, offDiagMax; | 
| 165 | 
< | 
  double hm[3][3], hmnew[3][3]; | 
| 166 | 
< | 
 | 
| 167 | 
< | 
 | 
| 168 | 
< | 
 | 
| 169 | 
< | 
  // Scale the box after all the positions have been moved: | 
| 170 | 
< | 
 | 
| 171 | 
< | 
  // Use a taylor expansion for eta products:  Hmat = Hmat . exp(dt * etaMat) | 
| 172 | 
< | 
  //  Hmat = Hmat . ( Ident + dt * etaMat  + dt^2 * etaMat*etaMat / 2) | 
| 173 | 
< | 
 | 
| 174 | 
< | 
  bigScale = 1.0; | 
| 175 | 
< | 
  smallScale = 1.0; | 
| 176 | 
< | 
  offDiagMax = 0.0; | 
| 177 | 
< | 
 | 
| 178 | 
< | 
  for(i=0; i<3; i++){ | 
| 179 | 
< | 
    for(j=0; j<3; j++){ | 
| 180 | 
< | 
      scaleMat[i][j] = 0.0; | 
| 181 | 
< | 
      if(i==j) scaleMat[i][j] = 1.0; | 
| 165 | 
> | 
      Mat3x3d hmat = currentSnapshot_->getHmat(); | 
| 166 | 
> | 
      hmat = hmat *scaleMat; | 
| 167 | 
> | 
      currentSnapshot_->setHmat(hmat); | 
| 168 | 
  | 
    } | 
| 169 | 
  | 
  } | 
| 170 | 
  | 
 | 
| 171 | 
< | 
  for(i=0;i<3;i++){ | 
| 172 | 
< | 
 | 
| 187 | 
< | 
    // calculate the scaleFactors | 
| 188 | 
< | 
 | 
| 189 | 
< | 
    scaleFactor = exp(dt*eta[i][i]); | 
| 190 | 
< | 
 | 
| 191 | 
< | 
    scaleMat[i][i] = scaleFactor; | 
| 192 | 
< | 
 | 
| 193 | 
< | 
    if (scaleMat[i][i] > bigScale) bigScale = scaleMat[i][i]; | 
| 194 | 
< | 
    if (scaleMat[i][i] < smallScale) smallScale = scaleMat[i][i]; | 
| 171 | 
> | 
  void NPTxyz::loadEta() { | 
| 172 | 
> | 
    eta= currentSnapshot_->getEta(); | 
| 173 | 
  | 
  } | 
| 174 | 
  | 
 | 
| 197 | 
– | 
//   for(i=0; i<3; i++){ | 
| 198 | 
– | 
//     for(j=0; j<3; j++){ | 
| 199 | 
– | 
 | 
| 200 | 
– | 
//       // Calculate the matrix Product of the eta array (we only need | 
| 201 | 
– | 
//       // the ij element right now): | 
| 202 | 
– | 
 | 
| 203 | 
– | 
//       eta2ij = 0.0; | 
| 204 | 
– | 
//       for(k=0; k<3; k++){ | 
| 205 | 
– | 
//         eta2ij += eta[i][k] * eta[k][j]; | 
| 206 | 
– | 
//       } | 
| 207 | 
– | 
 | 
| 208 | 
– | 
//       scaleMat[i][j] = 0.0; | 
| 209 | 
– | 
//       // identity matrix (see above): | 
| 210 | 
– | 
//       if (i == j) scaleMat[i][j] = 1.0; | 
| 211 | 
– | 
//       // Taylor expansion for the exponential truncated at second order: | 
| 212 | 
– | 
//       scaleMat[i][j] += dt*eta[i][j]  + 0.5*dt*dt*eta2ij; | 
| 213 | 
– | 
 | 
| 214 | 
– | 
//       if (i != j) | 
| 215 | 
– | 
//         if (fabs(scaleMat[i][j]) > offDiagMax) | 
| 216 | 
– | 
//           offDiagMax = fabs(scaleMat[i][j]); | 
| 217 | 
– | 
//     } | 
| 218 | 
– | 
 | 
| 219 | 
– | 
//     if (scaleMat[i][i] > bigScale) bigScale = scaleMat[i][i]; | 
| 220 | 
– | 
//     if (scaleMat[i][i] < smallScale) smallScale = scaleMat[i][i]; | 
| 221 | 
– | 
//   } | 
| 222 | 
– | 
 | 
| 223 | 
– | 
  if ((bigScale > 1.1) || (smallScale < 0.9)) { | 
| 224 | 
– | 
    sprintf( painCave.errMsg, | 
| 225 | 
– | 
             "NPTxyz error: Attempting a Box scaling of more than 10 percent.\n" | 
| 226 | 
– | 
             " Check your tauBarostat, as it is probably too small!\n\n" | 
| 227 | 
– | 
             " scaleMat = [%lf\t%lf\t%lf]\n" | 
| 228 | 
– | 
             "            [%lf\t%lf\t%lf]\n" | 
| 229 | 
– | 
             "            [%lf\t%lf\t%lf]\n", | 
| 230 | 
– | 
             scaleMat[0][0],scaleMat[0][1],scaleMat[0][2], | 
| 231 | 
– | 
             scaleMat[1][0],scaleMat[1][1],scaleMat[1][2], | 
| 232 | 
– | 
             scaleMat[2][0],scaleMat[2][1],scaleMat[2][2]); | 
| 233 | 
– | 
    painCave.isFatal = 1; | 
| 234 | 
– | 
    simError(); | 
| 235 | 
– | 
  } else { | 
| 236 | 
– | 
    info->getBoxM(hm); | 
| 237 | 
– | 
    matMul3(hm, scaleMat, hmnew); | 
| 238 | 
– | 
    info->setBoxM(hmnew); | 
| 239 | 
– | 
  } | 
| 175 | 
  | 
} | 
| 241 | 
– | 
 | 
| 242 | 
– | 
template<typename T> bool NPTxyz<T>::etaConverged() { | 
| 243 | 
– | 
  int i; | 
| 244 | 
– | 
  double diffEta, sumEta; | 
| 245 | 
– | 
 | 
| 246 | 
– | 
  sumEta = 0; | 
| 247 | 
– | 
  for(i = 0; i < 3; i++) | 
| 248 | 
– | 
    sumEta += pow(prevEta[i][i] - eta[i][i], 2); | 
| 249 | 
– | 
 | 
| 250 | 
– | 
  diffEta = sqrt( sumEta / 3.0 ); | 
| 251 | 
– | 
 | 
| 252 | 
– | 
  return ( diffEta <= etaTolerance ); | 
| 253 | 
– | 
} | 
| 254 | 
– | 
 | 
| 255 | 
– | 
template<typename T> double NPTxyz<T>::getConservedQuantity(void){ | 
| 256 | 
– | 
 | 
| 257 | 
– | 
  double conservedQuantity; | 
| 258 | 
– | 
  double totalEnergy; | 
| 259 | 
– | 
  double thermostat_kinetic; | 
| 260 | 
– | 
  double thermostat_potential; | 
| 261 | 
– | 
  double barostat_kinetic; | 
| 262 | 
– | 
  double barostat_potential; | 
| 263 | 
– | 
  double trEta; | 
| 264 | 
– | 
  double a[3][3], b[3][3]; | 
| 265 | 
– | 
 | 
| 266 | 
– | 
  totalEnergy = tStats->getTotalE(); | 
| 267 | 
– | 
 | 
| 268 | 
– | 
  thermostat_kinetic = fkBT * tt2 * chi * chi / | 
| 269 | 
– | 
    (2.0 * eConvert); | 
| 270 | 
– | 
 | 
| 271 | 
– | 
  thermostat_potential = fkBT* integralOfChidt / eConvert; | 
| 272 | 
– | 
 | 
| 273 | 
– | 
  transposeMat3(eta, a); | 
| 274 | 
– | 
  matMul3(a, eta, b); | 
| 275 | 
– | 
  trEta = matTrace3(b); | 
| 276 | 
– | 
 | 
| 277 | 
– | 
  barostat_kinetic = NkBT * tb2 * trEta / | 
| 278 | 
– | 
    (2.0 * eConvert); | 
| 279 | 
– | 
 | 
| 280 | 
– | 
  barostat_potential = (targetPressure * tStats->getVolume() / p_convert) / | 
| 281 | 
– | 
    eConvert; | 
| 282 | 
– | 
 | 
| 283 | 
– | 
  conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + | 
| 284 | 
– | 
    barostat_kinetic + barostat_potential; | 
| 285 | 
– | 
 | 
| 286 | 
– | 
//   cout.width(8); | 
| 287 | 
– | 
//   cout.precision(8); | 
| 288 | 
– | 
 | 
| 289 | 
– | 
//   cerr << info->getTime() << "\t" << Energy << "\t" << thermostat_kinetic << | 
| 290 | 
– | 
//       "\t" << thermostat_potential << "\t" << barostat_kinetic << | 
| 291 | 
– | 
//       "\t" << barostat_potential << "\t" << conservedQuantity << endl; | 
| 292 | 
– | 
 | 
| 293 | 
– | 
  return conservedQuantity; | 
| 294 | 
– | 
 | 
| 295 | 
– | 
} | 
| 296 | 
– | 
 | 
| 297 | 
– | 
template<typename T> string NPTxyz<T>::getAdditionalParameters(void){ | 
| 298 | 
– | 
  string parameters; | 
| 299 | 
– | 
  const int BUFFERSIZE = 2000; // size of the read buffer | 
| 300 | 
– | 
  char buffer[BUFFERSIZE]; | 
| 301 | 
– | 
 | 
| 302 | 
– | 
  sprintf(buffer,"\t%G\t%G;", chi, integralOfChidt); | 
| 303 | 
– | 
  parameters += buffer; | 
| 304 | 
– | 
 | 
| 305 | 
– | 
  for(int i = 0; i < 3; i++){ | 
| 306 | 
– | 
    sprintf(buffer,"\t%G\t%G\t%G;", eta[i][0], eta[i][1], eta[i][2]); | 
| 307 | 
– | 
    parameters += buffer; | 
| 308 | 
– | 
  } | 
| 309 | 
– | 
 | 
| 310 | 
– | 
  return parameters; | 
| 311 | 
– | 
 | 
| 312 | 
– | 
} |