| 1 | < | #include <math.h> | 
| 2 | < | #include "math/MatVec3.h" | 
| 3 | < | #include "primitives/Atom.hpp" | 
| 4 | < | #include "primitives/SRI.hpp" | 
| 5 | < | #include "primitives/AbstractClasses.hpp" | 
| 1 | > | /* | 
| 2 | > | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | > | * | 
| 4 | > | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | > | * non-exclusive, royalty free, license to use, modify and | 
| 6 | > | * redistribute this software in source and binary code form, provided | 
| 7 | > | * that the following conditions are met: | 
| 8 | > | * | 
| 9 | > | * 1. Acknowledgement of the program authors must be made in any | 
| 10 | > | *    publication of scientific results based in part on use of the | 
| 11 | > | *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | > | *    the article in which the program was described (Matthew | 
| 13 | > | *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | > | *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | > | *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | > | *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | > | * | 
| 18 | > | * 2. Redistributions of source code must retain the above copyright | 
| 19 | > | *    notice, this list of conditions and the following disclaimer. | 
| 20 | > | * | 
| 21 | > | * 3. Redistributions in binary form must reproduce the above copyright | 
| 22 | > | *    notice, this list of conditions and the following disclaimer in the | 
| 23 | > | *    documentation and/or other materials provided with the | 
| 24 | > | *    distribution. | 
| 25 | > | * | 
| 26 | > | * This software is provided "AS IS," without a warranty of any | 
| 27 | > | * kind. All express or implied conditions, representations and | 
| 28 | > | * warranties, including any implied warranty of merchantability, | 
| 29 | > | * fitness for a particular purpose or non-infringement, are hereby | 
| 30 | > | * excluded.  The University of Notre Dame and its licensors shall not | 
| 31 | > | * be liable for any damages suffered by licensee as a result of | 
| 32 | > | * using, modifying or distributing the software or its | 
| 33 | > | * derivatives. In no event will the University of Notre Dame or its | 
| 34 | > | * licensors be liable for any lost revenue, profit or data, or for | 
| 35 | > | * direct, indirect, special, consequential, incidental or punitive | 
| 36 | > | * damages, however caused and regardless of the theory of liability, | 
| 37 | > | * arising out of the use of or inability to use software, even if the | 
| 38 | > | * University of Notre Dame has been advised of the possibility of | 
| 39 | > | * such damages. | 
| 40 | > | */ | 
| 41 | > |  | 
| 42 |  | #include "brains/SimInfo.hpp" | 
| 7 | – | #include "UseTheForce/ForceFields.hpp" | 
| 43 |  | #include "brains/Thermo.hpp" | 
| 44 | < | #include "io/ReadWrite.hpp" | 
| 45 | < | #include "integrators/Integrator.hpp" | 
| 44 | > | #include "integrators/IntegratorCreator.hpp" | 
| 45 | > | #include "integrators/NPTxyz.hpp" | 
| 46 | > | #include "primitives/Molecule.hpp" | 
| 47 | > | #include "utils/OOPSEConstant.hpp" | 
| 48 |  | #include "utils/simError.h" | 
| 49 |  |  | 
| 13 | – | #ifdef IS_MPI | 
| 14 | – | #include "brains/mpiSimulation.hpp" | 
| 15 | – | #endif | 
| 16 | – |  | 
| 50 |  | // Basic non-isotropic thermostating and barostating via the Melchionna | 
| 51 |  | // modification of the Hoover algorithm: | 
| 52 |  | // | 
| 57 |  | // | 
| 58 |  | //    Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. | 
| 59 |  |  | 
| 60 | < | template<typename T> NPTxyz<T>::NPTxyz ( SimInfo *theInfo, ForceFields* the_ff): | 
| 28 | < | T( theInfo, the_ff ) | 
| 29 | < | { | 
| 30 | < | GenericData* data; | 
| 31 | < | DoubleVectorGenericData * etaValue; | 
| 32 | < | int i,j; | 
| 60 | > | namespace oopse { | 
| 61 |  |  | 
| 62 | < | for(i = 0; i < 3; i++){ | 
| 63 | < | for (j = 0; j < 3; j++){ | 
| 62 | > |  | 
| 63 | > | double NPTxyz::calcConservedQuantity(){ | 
| 64 |  |  | 
| 65 | < | eta[i][j] = 0.0; | 
| 66 | < | oldEta[i][j] = 0.0; | 
| 67 | < | } | 
| 68 | < | } | 
| 65 | > | // We need NkBT a lot, so just set it here: This is the RAW number | 
| 66 | > | // of integrableObjects, so no subtraction or addition of constraints or | 
| 67 | > | // orientational degrees of freedom: | 
| 68 | > | NkBT = info_->getNGlobalIntegrableObjects()*OOPSEConstant::kB *targetTemp; | 
| 69 |  |  | 
| 70 | + | // fkBT is used because the thermostat operates on more degrees of freedom | 
| 71 | + | // than the barostat (when there are particles with orientational degrees | 
| 72 | + | // of freedom). | 
| 73 | + | fkBT = info_->getNdf()*OOPSEConstant::kB *targetTemp; | 
| 74 |  |  | 
| 75 | < | if( theInfo->useInitXSstate ){ | 
| 75 | > | double conservedQuantity; | 
| 76 | > | double totalEnergy; | 
| 77 | > | double thermostat_kinetic; | 
| 78 | > | double thermostat_potential; | 
| 79 | > | double barostat_kinetic; | 
| 80 | > | double barostat_potential; | 
| 81 | > | double trEta; | 
| 82 |  |  | 
| 83 | < | // retrieve eta array from simInfo if it exists | 
| 46 | < | data = info->getProperty(ETAVALUE_ID); | 
| 47 | < | if(data){ | 
| 48 | < | etaValue = dynamic_cast<DoubleVectorGenericData*>(data); | 
| 49 | < |  | 
| 50 | < | if(etaValue){ | 
| 51 | < |  | 
| 52 | < | for(i = 0; i < 3; i++){ | 
| 53 | < | for (j = 0; j < 3; j++){ | 
| 54 | < | eta[i][j] = (*etaValue)[3*i+j]; | 
| 55 | < | oldEta[i][j] = eta[i][j]; | 
| 56 | < | } | 
| 57 | < | } | 
| 58 | < | } | 
| 59 | < | } | 
| 60 | < | } | 
| 61 | < | } | 
| 83 | > | totalEnergy = thermo.getTotalE(); | 
| 84 |  |  | 
| 85 | < | template<typename T> NPTxyz<T>::~NPTxyz() { | 
| 85 | > | thermostat_kinetic = fkBT * tt2 * chi * chi /(2.0 * OOPSEConstant::energyConvert); | 
| 86 |  |  | 
| 87 | < | // empty for now | 
| 66 | < | } | 
| 87 | > | thermostat_potential = fkBT* integralOfChidt / OOPSEConstant::energyConvert; | 
| 88 |  |  | 
| 89 | < | template<typename T> void NPTxyz<T>::resetIntegrator() { | 
| 89 | > | SquareMatrix<double, 3> tmp = eta.transpose() * eta; | 
| 90 | > | trEta = tmp.trace(); | 
| 91 |  |  | 
| 92 | < | int i, j; | 
| 92 | > | barostat_kinetic = NkBT * tb2 * trEta /(2.0 * OOPSEConstant::energyConvert); | 
| 93 |  |  | 
| 94 | < | for(i = 0; i < 3; i++) | 
| 73 | < | for (j = 0; j < 3; j++) | 
| 74 | < | eta[i][j] = 0.0; | 
| 94 | > | barostat_potential = (targetPressure * thermo.getVolume() / OOPSEConstant::pressureConvert) /OOPSEConstant::energyConvert; | 
| 95 |  |  | 
| 96 | < | T::resetIntegrator(); | 
| 97 | < | } | 
| 96 | > | conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + | 
| 97 | > | barostat_kinetic + barostat_potential; | 
| 98 |  |  | 
| 79 | – | template<typename T> void NPTxyz<T>::evolveEtaA() { | 
| 99 |  |  | 
| 100 | < | int i, j; | 
| 100 | > | return conservedQuantity; | 
| 101 |  |  | 
| 83 | – | for(i = 0; i < 3; i ++){ | 
| 84 | – | for(j = 0; j < 3; j++){ | 
| 85 | – | if( i == j) | 
| 86 | – | eta[i][j] += dt2 *  instaVol * | 
| 87 | – | (press[i][j] - targetPressure/p_convert) / (NkBT*tb2); | 
| 88 | – | else | 
| 89 | – | eta[i][j] = 0.0; | 
| 90 | – | } | 
| 102 |  | } | 
| 103 |  |  | 
| 104 | < | for(i = 0; i < 3; i++) | 
| 105 | < | for (j = 0; j < 3; j++) | 
| 95 | < | oldEta[i][j] = eta[i][j]; | 
| 96 | < | } | 
| 104 | > |  | 
| 105 | > | void NPTxyz::scaleSimBox(){ | 
| 106 |  |  | 
| 107 | < | template<typename T> void NPTxyz<T>::evolveEtaB() { | 
| 107 | > | int i,j,k; | 
| 108 | > | Mat3x3d scaleMat; | 
| 109 | > | double eta2ij, scaleFactor; | 
| 110 | > | double bigScale, smallScale, offDiagMax; | 
| 111 | > | Mat3x3d hm; | 
| 112 | > | Mat3x3d hmnew; | 
| 113 |  |  | 
| 100 | – | int i,j; | 
| 114 |  |  | 
| 102 | – | for(i = 0; i < 3; i++) | 
| 103 | – | for (j = 0; j < 3; j++) | 
| 104 | – | prevEta[i][j] = eta[i][j]; | 
| 115 |  |  | 
| 116 | < | for(i = 0; i < 3; i ++){ | 
| 107 | < | for(j = 0; j < 3; j++){ | 
| 108 | < | if( i == j) { | 
| 109 | < | eta[i][j] = oldEta[i][j] + dt2 *  instaVol * | 
| 110 | < | (press[i][j] - targetPressure/p_convert) / (NkBT*tb2); | 
| 111 | < | } else { | 
| 112 | < | eta[i][j] = 0.0; | 
| 113 | < | } | 
| 114 | < | } | 
| 115 | < | } | 
| 116 | < | } | 
| 116 | > | // Scale the box after all the positions have been moved: | 
| 117 |  |  | 
| 118 | < | template<typename T> void NPTxyz<T>::calcVelScale(void) { | 
| 119 | < | int i,j; | 
| 118 | > | // Use a taylor expansion for eta products:  Hmat = Hmat . exp(dt * etaMat) | 
| 119 | > | //  Hmat = Hmat . ( Ident + dt * etaMat  + dt^2 * etaMat*etaMat / 2) | 
| 120 |  |  | 
| 121 | < | for (i = 0; i < 3; i++ ) { | 
| 122 | < | for (j = 0; j < 3; j++ ) { | 
| 123 | < | vScale[i][j] = eta[i][j]; | 
| 121 | > | bigScale = 1.0; | 
| 122 | > | smallScale = 1.0; | 
| 123 | > | offDiagMax = 0.0; | 
| 124 |  |  | 
| 125 | < | if (i == j) { | 
| 126 | < | vScale[i][j] += chi; | 
| 125 | > | for(i=0; i<3; i++){ | 
| 126 | > | for(j=0; j<3; j++){ | 
| 127 | > | scaleMat(i, j) = 0.0; | 
| 128 | > | if(i==j) { | 
| 129 | > | scaleMat(i, j) = 1.0; | 
| 130 | > | } | 
| 131 |  | } | 
| 132 |  | } | 
| 129 | – | } | 
| 130 | – | } | 
| 133 |  |  | 
| 134 | < | template<typename T> void NPTxyz<T>::getVelScaleA(double sc[3], double vel[3]) { | 
| 133 | < | matVecMul3( vScale, vel, sc ); | 
| 134 | < | } | 
| 134 | > | for(i=0;i<3;i++){ | 
| 135 |  |  | 
| 136 | < | template<typename T> void NPTxyz<T>::getVelScaleB(double sc[3], int index ){ | 
| 137 | < | int j; | 
| 138 | < | double myVel[3]; | 
| 136 | > | // calculate the scaleFactors | 
| 137 |  |  | 
| 138 | < | for (j = 0; j < 3; j++) | 
| 141 | < | myVel[j] = oldVel[3*index + j]; | 
| 138 | > | scaleFactor = exp(dt*eta(i, i)); | 
| 139 |  |  | 
| 140 | < | matVecMul3( vScale, myVel, sc ); | 
| 144 | < | } | 
| 140 | > | scaleMat(i, i) = scaleFactor; | 
| 141 |  |  | 
| 142 | < | template<typename T> void NPTxyz<T>::getPosScale(double pos[3], double COM[3], | 
| 143 | < | int index, double sc[3]){ | 
| 144 | < | int j; | 
| 145 | < | double rj[3]; | 
| 142 | > | if (scaleMat(i, i) > bigScale) { | 
| 143 | > | bigScale = scaleMat(i, i); | 
| 144 | > | } | 
| 145 | > |  | 
| 146 | > | if (scaleMat(i, i) < smallScale) { | 
| 147 | > | smallScale = scaleMat(i, i); | 
| 148 | > | } | 
| 149 | > | } | 
| 150 |  |  | 
| 151 | < | for(j=0; j<3; j++) | 
| 152 | < | rj[j] = ( oldPos[index*3+j] + pos[j]) / 2.0 - COM[j]; | 
| 151 | > | if ((bigScale > 1.1) || (smallScale < 0.9)) { | 
| 152 | > | sprintf( painCave.errMsg, | 
| 153 | > | "NPTxyz error: Attempting a Box scaling of more than 10 percent.\n" | 
| 154 | > | " Check your tauBarostat, as it is probably too small!\n\n" | 
| 155 | > | " scaleMat = [%lf\t%lf\t%lf]\n" | 
| 156 | > | "            [%lf\t%lf\t%lf]\n" | 
| 157 | > | "            [%lf\t%lf\t%lf]\n", | 
| 158 | > | scaleMat(0, 0),scaleMat(0, 1),scaleMat(0, 2), | 
| 159 | > | scaleMat(1, 0),scaleMat(1, 1),scaleMat(1, 2), | 
| 160 | > | scaleMat(2, 0),scaleMat(2, 1),scaleMat(2, 2)); | 
| 161 | > | painCave.isFatal = 1; | 
| 162 | > | simError(); | 
| 163 | > | } else { | 
| 164 |  |  | 
| 165 | < | matVecMul3( eta, rj, sc ); | 
| 166 | < | } | 
| 167 | < |  | 
| 157 | < | template<typename T> void NPTxyz<T>::scaleSimBox( void ){ | 
| 158 | < |  | 
| 159 | < | int i,j,k; | 
| 160 | < | double scaleMat[3][3]; | 
| 161 | < | double eta2ij, scaleFactor; | 
| 162 | < | double bigScale, smallScale, offDiagMax; | 
| 163 | < | double hm[3][3], hmnew[3][3]; | 
| 164 | < |  | 
| 165 | < |  | 
| 166 | < |  | 
| 167 | < | // Scale the box after all the positions have been moved: | 
| 168 | < |  | 
| 169 | < | // Use a taylor expansion for eta products:  Hmat = Hmat . exp(dt * etaMat) | 
| 170 | < | //  Hmat = Hmat . ( Ident + dt * etaMat  + dt^2 * etaMat*etaMat / 2) | 
| 171 | < |  | 
| 172 | < | bigScale = 1.0; | 
| 173 | < | smallScale = 1.0; | 
| 174 | < | offDiagMax = 0.0; | 
| 175 | < |  | 
| 176 | < | for(i=0; i<3; i++){ | 
| 177 | < | for(j=0; j<3; j++){ | 
| 178 | < | scaleMat[i][j] = 0.0; | 
| 179 | < | if(i==j) scaleMat[i][j] = 1.0; | 
| 165 | > | Mat3x3d hmat = currentSnapshot_->getHmat(); | 
| 166 | > | hmat = hmat *scaleMat; | 
| 167 | > | currentSnapshot_->setHmat(hmat); | 
| 168 |  | } | 
| 169 |  | } | 
| 170 |  |  | 
| 171 | < | for(i=0;i<3;i++){ | 
| 172 | < |  | 
| 185 | < | // calculate the scaleFactors | 
| 186 | < |  | 
| 187 | < | scaleFactor = exp(dt*eta[i][i]); | 
| 188 | < |  | 
| 189 | < | scaleMat[i][i] = scaleFactor; | 
| 190 | < |  | 
| 191 | < | if (scaleMat[i][i] > bigScale) bigScale = scaleMat[i][i]; | 
| 192 | < | if (scaleMat[i][i] < smallScale) smallScale = scaleMat[i][i]; | 
| 171 | > | void NPTxyz::loadEta() { | 
| 172 | > | eta= currentSnapshot_->getEta(); | 
| 173 |  | } | 
| 174 |  |  | 
| 195 | – | //   for(i=0; i<3; i++){ | 
| 196 | – | //     for(j=0; j<3; j++){ | 
| 197 | – |  | 
| 198 | – | //       // Calculate the matrix Product of the eta array (we only need | 
| 199 | – | //       // the ij element right now): | 
| 200 | – |  | 
| 201 | – | //       eta2ij = 0.0; | 
| 202 | – | //       for(k=0; k<3; k++){ | 
| 203 | – | //         eta2ij += eta[i][k] * eta[k][j]; | 
| 204 | – | //       } | 
| 205 | – |  | 
| 206 | – | //       scaleMat[i][j] = 0.0; | 
| 207 | – | //       // identity matrix (see above): | 
| 208 | – | //       if (i == j) scaleMat[i][j] = 1.0; | 
| 209 | – | //       // Taylor expansion for the exponential truncated at second order: | 
| 210 | – | //       scaleMat[i][j] += dt*eta[i][j]  + 0.5*dt*dt*eta2ij; | 
| 211 | – |  | 
| 212 | – | //       if (i != j) | 
| 213 | – | //         if (fabs(scaleMat[i][j]) > offDiagMax) | 
| 214 | – | //           offDiagMax = fabs(scaleMat[i][j]); | 
| 215 | – | //     } | 
| 216 | – |  | 
| 217 | – | //     if (scaleMat[i][i] > bigScale) bigScale = scaleMat[i][i]; | 
| 218 | – | //     if (scaleMat[i][i] < smallScale) smallScale = scaleMat[i][i]; | 
| 219 | – | //   } | 
| 220 | – |  | 
| 221 | – | if ((bigScale > 1.1) || (smallScale < 0.9)) { | 
| 222 | – | sprintf( painCave.errMsg, | 
| 223 | – | "NPTxyz error: Attempting a Box scaling of more than 10 percent.\n" | 
| 224 | – | " Check your tauBarostat, as it is probably too small!\n\n" | 
| 225 | – | " scaleMat = [%lf\t%lf\t%lf]\n" | 
| 226 | – | "            [%lf\t%lf\t%lf]\n" | 
| 227 | – | "            [%lf\t%lf\t%lf]\n", | 
| 228 | – | scaleMat[0][0],scaleMat[0][1],scaleMat[0][2], | 
| 229 | – | scaleMat[1][0],scaleMat[1][1],scaleMat[1][2], | 
| 230 | – | scaleMat[2][0],scaleMat[2][1],scaleMat[2][2]); | 
| 231 | – | painCave.isFatal = 1; | 
| 232 | – | simError(); | 
| 233 | – | } else { | 
| 234 | – | info->getBoxM(hm); | 
| 235 | – | matMul3(hm, scaleMat, hmnew); | 
| 236 | – | info->setBoxM(hmnew); | 
| 237 | – | } | 
| 175 |  | } | 
| 239 | – |  | 
| 240 | – | template<typename T> bool NPTxyz<T>::etaConverged() { | 
| 241 | – | int i; | 
| 242 | – | double diffEta, sumEta; | 
| 243 | – |  | 
| 244 | – | sumEta = 0; | 
| 245 | – | for(i = 0; i < 3; i++) | 
| 246 | – | sumEta += pow(prevEta[i][i] - eta[i][i], 2); | 
| 247 | – |  | 
| 248 | – | diffEta = sqrt( sumEta / 3.0 ); | 
| 249 | – |  | 
| 250 | – | return ( diffEta <= etaTolerance ); | 
| 251 | – | } | 
| 252 | – |  | 
| 253 | – | template<typename T> double NPTxyz<T>::getConservedQuantity(void){ | 
| 254 | – |  | 
| 255 | – | double conservedQuantity; | 
| 256 | – | double totalEnergy; | 
| 257 | – | double thermostat_kinetic; | 
| 258 | – | double thermostat_potential; | 
| 259 | – | double barostat_kinetic; | 
| 260 | – | double barostat_potential; | 
| 261 | – | double trEta; | 
| 262 | – | double a[3][3], b[3][3]; | 
| 263 | – |  | 
| 264 | – | totalEnergy = tStats->getTotalE(); | 
| 265 | – |  | 
| 266 | – | thermostat_kinetic = fkBT * tt2 * chi * chi / | 
| 267 | – | (2.0 * eConvert); | 
| 268 | – |  | 
| 269 | – | thermostat_potential = fkBT* integralOfChidt / eConvert; | 
| 270 | – |  | 
| 271 | – | transposeMat3(eta, a); | 
| 272 | – | matMul3(a, eta, b); | 
| 273 | – | trEta = matTrace3(b); | 
| 274 | – |  | 
| 275 | – | barostat_kinetic = NkBT * tb2 * trEta / | 
| 276 | – | (2.0 * eConvert); | 
| 277 | – |  | 
| 278 | – | barostat_potential = (targetPressure * tStats->getVolume() / p_convert) / | 
| 279 | – | eConvert; | 
| 280 | – |  | 
| 281 | – | conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + | 
| 282 | – | barostat_kinetic + barostat_potential; | 
| 283 | – |  | 
| 284 | – | //   cout.width(8); | 
| 285 | – | //   cout.precision(8); | 
| 286 | – |  | 
| 287 | – | //   cerr << info->getTime() << "\t" << Energy << "\t" << thermostat_kinetic << | 
| 288 | – | //       "\t" << thermostat_potential << "\t" << barostat_kinetic << | 
| 289 | – | //       "\t" << barostat_potential << "\t" << conservedQuantity << endl; | 
| 290 | – |  | 
| 291 | – | return conservedQuantity; | 
| 292 | – |  | 
| 293 | – | } | 
| 294 | – |  | 
| 295 | – | template<typename T> string NPTxyz<T>::getAdditionalParameters(void){ | 
| 296 | – | string parameters; | 
| 297 | – | const int BUFFERSIZE = 2000; // size of the read buffer | 
| 298 | – | char buffer[BUFFERSIZE]; | 
| 299 | – |  | 
| 300 | – | sprintf(buffer,"\t%G\t%G;", chi, integralOfChidt); | 
| 301 | – | parameters += buffer; | 
| 302 | – |  | 
| 303 | – | for(int i = 0; i < 3; i++){ | 
| 304 | – | sprintf(buffer,"\t%G\t%G\t%G;", eta[i][0], eta[i][1], eta[i][2]); | 
| 305 | – | parameters += buffer; | 
| 306 | – | } | 
| 307 | – |  | 
| 308 | – | return parameters; | 
| 309 | – |  | 
| 310 | – | } |