| 1 |
tim |
536 |
/* |
| 2 |
|
|
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
| 3 |
|
|
* |
| 4 |
|
|
* The University of Notre Dame grants you ("Licensee") a |
| 5 |
|
|
* non-exclusive, royalty free, license to use, modify and |
| 6 |
|
|
* redistribute this software in source and binary code form, provided |
| 7 |
|
|
* that the following conditions are met: |
| 8 |
|
|
* |
| 9 |
|
|
* 1. Acknowledgement of the program authors must be made in any |
| 10 |
|
|
* publication of scientific results based in part on use of the |
| 11 |
|
|
* program. An acceptable form of acknowledgement is citation of |
| 12 |
|
|
* the article in which the program was described (Matthew |
| 13 |
|
|
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
| 14 |
|
|
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
| 15 |
|
|
* Parallel Simulation Engine for Molecular Dynamics," |
| 16 |
|
|
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
| 17 |
|
|
* |
| 18 |
|
|
* 2. Redistributions of source code must retain the above copyright |
| 19 |
|
|
* notice, this list of conditions and the following disclaimer. |
| 20 |
|
|
* |
| 21 |
|
|
* 3. Redistributions in binary form must reproduce the above copyright |
| 22 |
|
|
* notice, this list of conditions and the following disclaimer in the |
| 23 |
|
|
* documentation and/or other materials provided with the |
| 24 |
|
|
* distribution. |
| 25 |
|
|
* |
| 26 |
|
|
* This software is provided "AS IS," without a warranty of any |
| 27 |
|
|
* kind. All express or implied conditions, representations and |
| 28 |
|
|
* warranties, including any implied warranty of merchantability, |
| 29 |
|
|
* fitness for a particular purpose or non-infringement, are hereby |
| 30 |
|
|
* excluded. The University of Notre Dame and its licensors shall not |
| 31 |
|
|
* be liable for any damages suffered by licensee as a result of |
| 32 |
|
|
* using, modifying or distributing the software or its |
| 33 |
|
|
* derivatives. In no event will the University of Notre Dame or its |
| 34 |
|
|
* licensors be liable for any lost revenue, profit or data, or for |
| 35 |
|
|
* direct, indirect, special, consequential, incidental or punitive |
| 36 |
|
|
* damages, however caused and regardless of the theory of liability, |
| 37 |
|
|
* arising out of the use of or inability to use software, even if the |
| 38 |
|
|
* University of Notre Dame has been advised of the possibility of |
| 39 |
|
|
* such damages. |
| 40 |
|
|
*/ |
| 41 |
|
|
|
| 42 |
|
|
#include "brains/SimInfo.hpp" |
| 43 |
|
|
#include "brains/Thermo.hpp" |
| 44 |
|
|
#include "integrators/IntegratorCreator.hpp" |
| 45 |
|
|
#include "integrators/NPrT.hpp" |
| 46 |
|
|
#include "primitives/Molecule.hpp" |
| 47 |
|
|
#include "utils/OOPSEConstant.hpp" |
| 48 |
|
|
#include "utils/simError.h" |
| 49 |
|
|
|
| 50 |
|
|
namespace oopse { |
| 51 |
|
|
NPrT::NPrT(SimInfo* info) : NPT(info) { |
| 52 |
|
|
Globals* simParams = info_->getSimParams(); |
| 53 |
tim |
538 |
if (!simParams->haveSurfaceTension()) { |
| 54 |
tim |
536 |
sprintf(painCave.errMsg, |
| 55 |
|
|
"If you use the NPT integrator, you must set tauBarostat.\n"); |
| 56 |
|
|
painCave.severity = OOPSE_ERROR; |
| 57 |
|
|
painCave.isFatal = 1; |
| 58 |
|
|
simError(); |
| 59 |
|
|
} else { |
| 60 |
tim |
538 |
surfaceTension= simParams->getSurfaceTension(); |
| 61 |
tim |
536 |
} |
| 62 |
|
|
|
| 63 |
|
|
} |
| 64 |
|
|
void NPrT::evolveEtaA() { |
| 65 |
tim |
537 |
Mat3x3d hmat = currentSnapshot_->getHmat(); |
| 66 |
|
|
double hz = hmat(2, 2); |
| 67 |
|
|
double Axy = hmat(0,0) * hmat(1, 1); |
| 68 |
tim |
536 |
double sx = -hz * (press(0, 0) - targetPressure/OOPSEConstant::pressureConvert); |
| 69 |
|
|
double sy = -hz * (press(1, 1) - targetPressure/OOPSEConstant::pressureConvert); |
| 70 |
tim |
540 |
eta(0,0) -= dt2* Axy * (sx - surfaceTension) / (NkBT*tb2); |
| 71 |
|
|
eta(1,1) -= dt2* Axy * (sy - surfaceTension) / (NkBT*tb2); |
| 72 |
tim |
536 |
eta(2,2) += dt2 * instaVol * (press(2, 2) - targetPressure/OOPSEConstant::pressureConvert) / (NkBT*tb2); |
| 73 |
|
|
oldEta = eta; |
| 74 |
|
|
} |
| 75 |
|
|
|
| 76 |
|
|
void NPrT::evolveEtaB() { |
| 77 |
tim |
537 |
Mat3x3d hmat = currentSnapshot_->getHmat(); |
| 78 |
|
|
double hz = hmat(2, 2); |
| 79 |
|
|
double Axy = hmat(0,0) * hmat(1, 1); |
| 80 |
tim |
536 |
prevEta = eta; |
| 81 |
|
|
double sx = -hz * (press(0, 0) - targetPressure/OOPSEConstant::pressureConvert); |
| 82 |
|
|
double sy = -hz * (press(1, 1) - targetPressure/OOPSEConstant::pressureConvert); |
| 83 |
tim |
540 |
eta(0,0) = oldEta(0, 0) - dt2 * Axy * (sx -surfaceTension) / (NkBT*tb2); |
| 84 |
|
|
eta(1,1) = oldEta(1, 1) - dt2 * Axy * (sy -surfaceTension) / (NkBT*tb2); |
| 85 |
tim |
536 |
eta(2,2) = oldEta(2, 2) + dt2 * instaVol * |
| 86 |
|
|
(press(2, 2) - targetPressure/OOPSEConstant::pressureConvert) / (NkBT*tb2); |
| 87 |
|
|
} |
| 88 |
|
|
|
| 89 |
|
|
void NPrT::calcVelScale(){ |
| 90 |
|
|
|
| 91 |
|
|
for (int i = 0; i < 3; i++ ) { |
| 92 |
|
|
for (int j = 0; j < 3; j++ ) { |
| 93 |
|
|
vScale(i, j) = eta(i, j); |
| 94 |
|
|
|
| 95 |
|
|
if (i == j) { |
| 96 |
|
|
vScale(i, j) += chi; |
| 97 |
|
|
} |
| 98 |
|
|
} |
| 99 |
|
|
} |
| 100 |
|
|
} |
| 101 |
|
|
|
| 102 |
|
|
void NPrT::getVelScaleA(Vector3d& sc, const Vector3d& vel){ |
| 103 |
|
|
sc = vScale * vel; |
| 104 |
|
|
} |
| 105 |
|
|
|
| 106 |
|
|
void NPrT::getVelScaleB(Vector3d& sc, int index ) { |
| 107 |
|
|
sc = vScale * oldVel[index]; |
| 108 |
|
|
} |
| 109 |
|
|
|
| 110 |
|
|
void NPrT::getPosScale(const Vector3d& pos, const Vector3d& COM, int index, Vector3d& sc) { |
| 111 |
|
|
|
| 112 |
|
|
/**@todo */ |
| 113 |
|
|
Vector3d rj = (oldPos[index] + pos)/2.0 -COM; |
| 114 |
|
|
sc = eta * rj; |
| 115 |
|
|
} |
| 116 |
|
|
|
| 117 |
|
|
void NPrT::scaleSimBox(){ |
| 118 |
|
|
Mat3x3d scaleMat; |
| 119 |
|
|
|
| 120 |
tim |
539 |
scaleMat(0, 0) = exp(dt*eta(0, 0)); |
| 121 |
|
|
scaleMat(1, 1) = exp(dt*eta(1, 1)); |
| 122 |
|
|
scaleMat(2, 2) = exp(dt*eta(2, 2)); |
| 123 |
|
|
Mat3x3d hmat = currentSnapshot_->getHmat(); |
| 124 |
|
|
hmat = hmat *scaleMat; |
| 125 |
|
|
currentSnapshot_->setHmat(hmat); |
| 126 |
tim |
536 |
|
| 127 |
|
|
} |
| 128 |
|
|
|
| 129 |
|
|
bool NPrT::etaConverged() { |
| 130 |
|
|
int i; |
| 131 |
|
|
double diffEta, sumEta; |
| 132 |
|
|
|
| 133 |
|
|
sumEta = 0; |
| 134 |
|
|
for(i = 0; i < 3; i++) { |
| 135 |
|
|
sumEta += pow(prevEta(i, i) - eta(i, i), 2); |
| 136 |
|
|
} |
| 137 |
|
|
|
| 138 |
|
|
diffEta = sqrt( sumEta / 3.0 ); |
| 139 |
|
|
|
| 140 |
|
|
return ( diffEta <= etaTolerance ); |
| 141 |
|
|
} |
| 142 |
|
|
|
| 143 |
|
|
double NPrT::calcConservedQuantity(){ |
| 144 |
|
|
|
| 145 |
|
|
chi= currentSnapshot_->getChi(); |
| 146 |
|
|
integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); |
| 147 |
|
|
loadEta(); |
| 148 |
|
|
|
| 149 |
|
|
// We need NkBT a lot, so just set it here: This is the RAW number |
| 150 |
|
|
// of integrableObjects, so no subtraction or addition of constraints or |
| 151 |
|
|
// orientational degrees of freedom: |
| 152 |
|
|
NkBT = info_->getNGlobalIntegrableObjects()*OOPSEConstant::kB *targetTemp; |
| 153 |
|
|
|
| 154 |
|
|
// fkBT is used because the thermostat operates on more degrees of freedom |
| 155 |
|
|
// than the barostat (when there are particles with orientational degrees |
| 156 |
|
|
// of freedom). |
| 157 |
|
|
fkBT = info_->getNdf()*OOPSEConstant::kB *targetTemp; |
| 158 |
|
|
|
| 159 |
|
|
|
| 160 |
tim |
538 |
double totalEnergy = thermo.getTotalE(); |
| 161 |
tim |
536 |
|
| 162 |
tim |
538 |
double thermostat_kinetic = fkBT * tt2 * chi * chi /(2.0 * OOPSEConstant::energyConvert); |
| 163 |
tim |
536 |
|
| 164 |
tim |
538 |
double thermostat_potential = fkBT* integralOfChidt / OOPSEConstant::energyConvert; |
| 165 |
tim |
536 |
|
| 166 |
|
|
SquareMatrix<double, 3> tmp = eta.transpose() * eta; |
| 167 |
tim |
538 |
double trEta = tmp.trace(); |
| 168 |
tim |
536 |
|
| 169 |
tim |
538 |
double barostat_kinetic = NkBT * tb2 * trEta /(2.0 * OOPSEConstant::energyConvert); |
| 170 |
tim |
536 |
|
| 171 |
tim |
538 |
double barostat_potential = (targetPressure * thermo.getVolume() / OOPSEConstant::pressureConvert) /OOPSEConstant::energyConvert; |
| 172 |
tim |
536 |
|
| 173 |
tim |
538 |
Mat3x3d hmat = currentSnapshot_->getHmat(); |
| 174 |
|
|
double hz = hmat(2, 2); |
| 175 |
|
|
double area = hmat(0,0) * hmat(1, 1); |
| 176 |
tim |
536 |
|
| 177 |
tim |
538 |
double conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + |
| 178 |
|
|
barostat_kinetic + barostat_potential - surfaceTension * area; |
| 179 |
|
|
|
| 180 |
tim |
536 |
return conservedQuantity; |
| 181 |
|
|
|
| 182 |
|
|
} |
| 183 |
|
|
|
| 184 |
|
|
void NPrT::loadEta() { |
| 185 |
|
|
eta= currentSnapshot_->getEta(); |
| 186 |
|
|
|
| 187 |
|
|
//if (!eta.isDiagonal()) { |
| 188 |
|
|
// sprintf( painCave.errMsg, |
| 189 |
|
|
// "NPrT error: the diagonal elements of eta matrix are not the same or etaMat is not a diagonal matrix"); |
| 190 |
|
|
// painCave.isFatal = 1; |
| 191 |
|
|
// simError(); |
| 192 |
|
|
//} |
| 193 |
|
|
} |
| 194 |
|
|
|
| 195 |
|
|
void NPrT::saveEta() { |
| 196 |
|
|
currentSnapshot_->setEta(eta); |
| 197 |
|
|
} |
| 198 |
|
|
|
| 199 |
|
|
} |
| 200 |
|
|
|
| 201 |
|
|
|