| 57 |
|
painCave.isFatal = 1; |
| 58 |
|
simError(); |
| 59 |
|
} else { |
| 60 |
< |
surfaceTension= simParams->getSurfaceTension(); |
| 60 |
> |
surfaceTension= simParams->getSurfaceTension()* OOPSEConstant::surfaceTensionConvert * OOPSEConstant::energyConvert; |
| 61 |
|
} |
| 62 |
|
|
| 63 |
|
} |
| 64 |
|
void NPrT::evolveEtaA() { |
| 65 |
|
Mat3x3d hmat = currentSnapshot_->getHmat(); |
| 66 |
< |
double hz = hmat(2, 2); |
| 67 |
< |
double Axy = hmat(0,0) * hmat(1, 1); |
| 68 |
< |
double sx = -hz * (press(0, 0) - targetPressure/OOPSEConstant::pressureConvert); |
| 69 |
< |
double sy = -hz * (press(1, 1) - targetPressure/OOPSEConstant::pressureConvert); |
| 70 |
< |
eta(0,0) -= Axy * (sx - surfaceTension) / (NkBT*tb2); |
| 71 |
< |
eta(1,1) -= Axy * (sy - surfaceTension) / (NkBT*tb2); |
| 66 |
> |
RealType hz = hmat(2, 2); |
| 67 |
> |
RealType Axy = hmat(0,0) * hmat(1, 1); |
| 68 |
> |
RealType sx = -hz * (press(0, 0) - targetPressure/OOPSEConstant::pressureConvert); |
| 69 |
> |
RealType sy = -hz * (press(1, 1) - targetPressure/OOPSEConstant::pressureConvert); |
| 70 |
> |
eta(0,0) -= dt2* Axy * (sx - surfaceTension) / (NkBT*tb2); |
| 71 |
> |
eta(1,1) -= dt2* Axy * (sy - surfaceTension) / (NkBT*tb2); |
| 72 |
|
eta(2,2) += dt2 * instaVol * (press(2, 2) - targetPressure/OOPSEConstant::pressureConvert) / (NkBT*tb2); |
| 73 |
|
oldEta = eta; |
| 74 |
|
} |
| 75 |
|
|
| 76 |
|
void NPrT::evolveEtaB() { |
| 77 |
|
Mat3x3d hmat = currentSnapshot_->getHmat(); |
| 78 |
< |
double hz = hmat(2, 2); |
| 79 |
< |
double Axy = hmat(0,0) * hmat(1, 1); |
| 78 |
> |
RealType hz = hmat(2, 2); |
| 79 |
> |
RealType Axy = hmat(0,0) * hmat(1, 1); |
| 80 |
|
prevEta = eta; |
| 81 |
< |
double sx = -hz * (press(0, 0) - targetPressure/OOPSEConstant::pressureConvert); |
| 82 |
< |
double sy = -hz * (press(1, 1) - targetPressure/OOPSEConstant::pressureConvert); |
| 83 |
< |
eta(0,0) = oldEta(0, 0) - Axy * (sx -surfaceTension) / (NkBT*tb2); |
| 84 |
< |
eta(1,1) = oldEta(1, 1) - Axy * (sy -surfaceTension) / (NkBT*tb2); |
| 81 |
> |
RealType sx = -hz * (press(0, 0) - targetPressure/OOPSEConstant::pressureConvert); |
| 82 |
> |
RealType sy = -hz * (press(1, 1) - targetPressure/OOPSEConstant::pressureConvert); |
| 83 |
> |
eta(0,0) = oldEta(0, 0) - dt2 * Axy * (sx -surfaceTension) / (NkBT*tb2); |
| 84 |
> |
eta(1,1) = oldEta(1, 1) - dt2 * Axy * (sy -surfaceTension) / (NkBT*tb2); |
| 85 |
|
eta(2,2) = oldEta(2, 2) + dt2 * instaVol * |
| 86 |
|
(press(2, 2) - targetPressure/OOPSEConstant::pressureConvert) / (NkBT*tb2); |
| 87 |
|
} |
| 110 |
|
void NPrT::getPosScale(const Vector3d& pos, const Vector3d& COM, int index, Vector3d& sc) { |
| 111 |
|
|
| 112 |
|
/**@todo */ |
| 113 |
< |
Vector3d rj = (oldPos[index] + pos)/2.0 -COM; |
| 113 |
> |
Vector3d rj = (oldPos[index] + pos)/(RealType)2.0 -COM; |
| 114 |
|
sc = eta * rj; |
| 115 |
|
} |
| 116 |
|
|
| 117 |
|
void NPrT::scaleSimBox(){ |
| 118 |
– |
|
| 119 |
– |
int i; |
| 120 |
– |
int j; |
| 121 |
– |
int k; |
| 118 |
|
Mat3x3d scaleMat; |
| 123 |
– |
double eta2ij; |
| 124 |
– |
double bigScale, smallScale, offDiagMax; |
| 125 |
– |
Mat3x3d hm; |
| 126 |
– |
Mat3x3d hmnew; |
| 119 |
|
|
| 120 |
+ |
scaleMat(0, 0) = exp(dt*eta(0, 0)); |
| 121 |
+ |
scaleMat(1, 1) = exp(dt*eta(1, 1)); |
| 122 |
+ |
scaleMat(2, 2) = exp(dt*eta(2, 2)); |
| 123 |
+ |
Mat3x3d hmat = currentSnapshot_->getHmat(); |
| 124 |
+ |
hmat = hmat *scaleMat; |
| 125 |
+ |
currentSnapshot_->setHmat(hmat); |
| 126 |
|
|
| 129 |
– |
|
| 130 |
– |
// Scale the box after all the positions have been moved: |
| 131 |
– |
|
| 132 |
– |
// Use a taylor expansion for eta products: Hmat = Hmat . exp(dt * etaMat) |
| 133 |
– |
// Hmat = Hmat . ( Ident + dt * etaMat + dt^2 * etaMat*etaMat / 2) |
| 134 |
– |
|
| 135 |
– |
bigScale = 1.0; |
| 136 |
– |
smallScale = 1.0; |
| 137 |
– |
offDiagMax = 0.0; |
| 138 |
– |
|
| 139 |
– |
for(i=0; i<3; i++){ |
| 140 |
– |
for(j=0; j<3; j++){ |
| 141 |
– |
|
| 142 |
– |
// Calculate the matrix Product of the eta array (we only need |
| 143 |
– |
// the ij element right now): |
| 144 |
– |
|
| 145 |
– |
eta2ij = 0.0; |
| 146 |
– |
for(k=0; k<3; k++){ |
| 147 |
– |
eta2ij += eta(i, k) * eta(k, j); |
| 148 |
– |
} |
| 149 |
– |
|
| 150 |
– |
scaleMat(i, j) = 0.0; |
| 151 |
– |
// identity matrix (see above): |
| 152 |
– |
if (i == j) scaleMat(i, j) = 1.0; |
| 153 |
– |
// Taylor expansion for the exponential truncated at second order: |
| 154 |
– |
scaleMat(i, j) += dt*eta(i, j) + 0.5*dt*dt*eta2ij; |
| 155 |
– |
|
| 156 |
– |
|
| 157 |
– |
if (i != j) |
| 158 |
– |
if (fabs(scaleMat(i, j)) > offDiagMax) |
| 159 |
– |
offDiagMax = fabs(scaleMat(i, j)); |
| 160 |
– |
} |
| 161 |
– |
|
| 162 |
– |
if (scaleMat(i, i) > bigScale) bigScale = scaleMat(i, i); |
| 163 |
– |
if (scaleMat(i, i) < smallScale) smallScale = scaleMat(i, i); |
| 164 |
– |
} |
| 165 |
– |
|
| 166 |
– |
if ((bigScale > 1.01) || (smallScale < 0.99)) { |
| 167 |
– |
sprintf( painCave.errMsg, |
| 168 |
– |
"NPrT error: Attempting a Box scaling of more than 1 percent.\n" |
| 169 |
– |
" Check your tauBarostat, as it is probably too small!\n\n" |
| 170 |
– |
" scaleMat = [%lf\t%lf\t%lf]\n" |
| 171 |
– |
" [%lf\t%lf\t%lf]\n" |
| 172 |
– |
" [%lf\t%lf\t%lf]\n" |
| 173 |
– |
" eta = [%lf\t%lf\t%lf]\n" |
| 174 |
– |
" [%lf\t%lf\t%lf]\n" |
| 175 |
– |
" [%lf\t%lf\t%lf]\n", |
| 176 |
– |
scaleMat(0, 0),scaleMat(0, 1),scaleMat(0, 2), |
| 177 |
– |
scaleMat(1, 0),scaleMat(1, 1),scaleMat(1, 2), |
| 178 |
– |
scaleMat(2, 0),scaleMat(2, 1),scaleMat(2, 2), |
| 179 |
– |
eta(0, 0),eta(0, 1),eta(0, 2), |
| 180 |
– |
eta(1, 0),eta(1, 1),eta(1, 2), |
| 181 |
– |
eta(2, 0),eta(2, 1),eta(2, 2)); |
| 182 |
– |
painCave.isFatal = 1; |
| 183 |
– |
simError(); |
| 184 |
– |
} else if (offDiagMax > 0.01) { |
| 185 |
– |
sprintf( painCave.errMsg, |
| 186 |
– |
"NPrT error: Attempting an off-diagonal Box scaling of more than 1 percent.\n" |
| 187 |
– |
" Check your tauBarostat, as it is probably too small!\n\n" |
| 188 |
– |
" scaleMat = [%lf\t%lf\t%lf]\n" |
| 189 |
– |
" [%lf\t%lf\t%lf]\n" |
| 190 |
– |
" [%lf\t%lf\t%lf]\n" |
| 191 |
– |
" eta = [%lf\t%lf\t%lf]\n" |
| 192 |
– |
" [%lf\t%lf\t%lf]\n" |
| 193 |
– |
" [%lf\t%lf\t%lf]\n", |
| 194 |
– |
scaleMat(0, 0),scaleMat(0, 1),scaleMat(0, 2), |
| 195 |
– |
scaleMat(1, 0),scaleMat(1, 1),scaleMat(1, 2), |
| 196 |
– |
scaleMat(2, 0),scaleMat(2, 1),scaleMat(2, 2), |
| 197 |
– |
eta(0, 0),eta(0, 1),eta(0, 2), |
| 198 |
– |
eta(1, 0),eta(1, 1),eta(1, 2), |
| 199 |
– |
eta(2, 0),eta(2, 1),eta(2, 2)); |
| 200 |
– |
painCave.isFatal = 1; |
| 201 |
– |
simError(); |
| 202 |
– |
} else { |
| 203 |
– |
|
| 204 |
– |
Mat3x3d hmat = currentSnapshot_->getHmat(); |
| 205 |
– |
hmat = hmat *scaleMat; |
| 206 |
– |
currentSnapshot_->setHmat(hmat); |
| 207 |
– |
|
| 208 |
– |
} |
| 127 |
|
} |
| 128 |
|
|
| 129 |
|
bool NPrT::etaConverged() { |
| 130 |
|
int i; |
| 131 |
< |
double diffEta, sumEta; |
| 131 |
> |
RealType diffEta, sumEta; |
| 132 |
|
|
| 133 |
|
sumEta = 0; |
| 134 |
|
for(i = 0; i < 3; i++) { |
| 140 |
|
return ( diffEta <= etaTolerance ); |
| 141 |
|
} |
| 142 |
|
|
| 143 |
< |
double NPrT::calcConservedQuantity(){ |
| 143 |
> |
RealType NPrT::calcConservedQuantity(){ |
| 144 |
|
|
| 145 |
|
chi= currentSnapshot_->getChi(); |
| 146 |
|
integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); |
| 157 |
|
fkBT = info_->getNdf()*OOPSEConstant::kB *targetTemp; |
| 158 |
|
|
| 159 |
|
|
| 160 |
< |
double totalEnergy = thermo.getTotalE(); |
| 160 |
> |
RealType totalEnergy = thermo.getTotalE(); |
| 161 |
|
|
| 162 |
< |
double thermostat_kinetic = fkBT * tt2 * chi * chi /(2.0 * OOPSEConstant::energyConvert); |
| 162 |
> |
RealType thermostat_kinetic = fkBT * tt2 * chi * chi /(2.0 * OOPSEConstant::energyConvert); |
| 163 |
|
|
| 164 |
< |
double thermostat_potential = fkBT* integralOfChidt / OOPSEConstant::energyConvert; |
| 164 |
> |
RealType thermostat_potential = fkBT* integralOfChidt / OOPSEConstant::energyConvert; |
| 165 |
|
|
| 166 |
< |
SquareMatrix<double, 3> tmp = eta.transpose() * eta; |
| 167 |
< |
double trEta = tmp.trace(); |
| 166 |
> |
SquareMatrix<RealType, 3> tmp = eta.transpose() * eta; |
| 167 |
> |
RealType trEta = tmp.trace(); |
| 168 |
|
|
| 169 |
< |
double barostat_kinetic = NkBT * tb2 * trEta /(2.0 * OOPSEConstant::energyConvert); |
| 169 |
> |
RealType barostat_kinetic = NkBT * tb2 * trEta /(2.0 * OOPSEConstant::energyConvert); |
| 170 |
|
|
| 171 |
< |
double barostat_potential = (targetPressure * thermo.getVolume() / OOPSEConstant::pressureConvert) /OOPSEConstant::energyConvert; |
| 171 |
> |
RealType barostat_potential = (targetPressure * thermo.getVolume() / OOPSEConstant::pressureConvert) /OOPSEConstant::energyConvert; |
| 172 |
|
|
| 173 |
|
Mat3x3d hmat = currentSnapshot_->getHmat(); |
| 174 |
< |
double hz = hmat(2, 2); |
| 175 |
< |
double area = hmat(0,0) * hmat(1, 1); |
| 174 |
> |
RealType hz = hmat(2, 2); |
| 175 |
> |
RealType area = hmat(0,0) * hmat(1, 1); |
| 176 |
|
|
| 177 |
< |
double conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + |
| 178 |
< |
barostat_kinetic + barostat_potential - surfaceTension * area; |
| 177 |
> |
RealType conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + |
| 178 |
> |
barostat_kinetic + barostat_potential - surfaceTension * area/ OOPSEConstant::energyConvert; |
| 179 |
|
|
| 180 |
|
return conservedQuantity; |
| 181 |
|
|