| 6 |
|
* redistribute this software in source and binary code form, provided |
| 7 |
|
* that the following conditions are met: |
| 8 |
|
* |
| 9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
| 10 |
< |
* publication of scientific results based in part on use of the |
| 11 |
< |
* program. An acceptable form of acknowledgement is citation of |
| 12 |
< |
* the article in which the program was described (Matthew |
| 13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
| 14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
| 15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
| 16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
| 17 |
< |
* |
| 18 |
< |
* 2. Redistributions of source code must retain the above copyright |
| 9 |
> |
* 1. Redistributions of source code must retain the above copyright |
| 10 |
|
* notice, this list of conditions and the following disclaimer. |
| 11 |
|
* |
| 12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
| 12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
| 13 |
|
* notice, this list of conditions and the following disclaimer in the |
| 14 |
|
* documentation and/or other materials provided with the |
| 15 |
|
* distribution. |
| 28 |
|
* arising out of the use of or inability to use software, even if the |
| 29 |
|
* University of Notre Dame has been advised of the possibility of |
| 30 |
|
* such damages. |
| 31 |
+ |
* |
| 32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
| 33 |
+ |
* research, please cite the appropriate papers when you publish your |
| 34 |
+ |
* work. Good starting points are: |
| 35 |
+ |
* |
| 36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
| 37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
| 38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
| 39 |
+ |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
| 40 |
+ |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
| 41 |
|
*/ |
| 42 |
|
|
| 43 |
|
#include "brains/SimInfo.hpp" |
| 45 |
|
#include "integrators/IntegratorCreator.hpp" |
| 46 |
|
#include "integrators/NPrT.hpp" |
| 47 |
|
#include "primitives/Molecule.hpp" |
| 48 |
< |
#include "utils/OOPSEConstant.hpp" |
| 48 |
> |
#include "utils/PhysicalConstants.hpp" |
| 49 |
|
#include "utils/simError.h" |
| 50 |
|
|
| 51 |
< |
namespace oopse { |
| 51 |
> |
namespace OpenMD { |
| 52 |
|
NPrT::NPrT(SimInfo* info) : NPT(info) { |
| 53 |
|
Globals* simParams = info_->getSimParams(); |
| 54 |
|
if (!simParams->haveSurfaceTension()) { |
| 55 |
|
sprintf(painCave.errMsg, |
| 56 |
|
"If you use the NPT integrator, you must set tauBarostat.\n"); |
| 57 |
< |
painCave.severity = OOPSE_ERROR; |
| 57 |
> |
painCave.severity = OPENMD_ERROR; |
| 58 |
|
painCave.isFatal = 1; |
| 59 |
|
simError(); |
| 60 |
|
} else { |
| 61 |
< |
surfaceTension= simParams->getSurfaceTension()* OOPSEConstant::surfaceTensionConvert * OOPSEConstant::energyConvert; |
| 61 |
> |
surfaceTension= simParams->getSurfaceTension()* PhysicalConstants::surfaceTensionConvert * PhysicalConstants::energyConvert; |
| 62 |
|
} |
| 63 |
|
|
| 64 |
|
} |
| 65 |
|
void NPrT::evolveEtaA() { |
| 66 |
< |
Mat3x3d hmat = currentSnapshot_->getHmat(); |
| 66 |
> |
Mat3x3d hmat = snap->getHmat(); |
| 67 |
|
RealType hz = hmat(2, 2); |
| 68 |
|
RealType Axy = hmat(0,0) * hmat(1, 1); |
| 69 |
< |
RealType sx = -hz * (press(0, 0) - targetPressure/OOPSEConstant::pressureConvert); |
| 70 |
< |
RealType sy = -hz * (press(1, 1) - targetPressure/OOPSEConstant::pressureConvert); |
| 69 |
> |
RealType sx = -hz * (press(0, 0) - targetPressure/PhysicalConstants::pressureConvert); |
| 70 |
> |
RealType sy = -hz * (press(1, 1) - targetPressure/PhysicalConstants::pressureConvert); |
| 71 |
|
eta(0,0) -= dt2* Axy * (sx - surfaceTension) / (NkBT*tb2); |
| 72 |
|
eta(1,1) -= dt2* Axy * (sy - surfaceTension) / (NkBT*tb2); |
| 73 |
< |
eta(2,2) += dt2 * instaVol * (press(2, 2) - targetPressure/OOPSEConstant::pressureConvert) / (NkBT*tb2); |
| 73 |
> |
eta(2,2) += dt2 * instaVol * (press(2, 2) - targetPressure/PhysicalConstants::pressureConvert) / (NkBT*tb2); |
| 74 |
|
oldEta = eta; |
| 75 |
|
} |
| 76 |
|
|
| 77 |
|
void NPrT::evolveEtaB() { |
| 78 |
< |
Mat3x3d hmat = currentSnapshot_->getHmat(); |
| 78 |
> |
Mat3x3d hmat = snap->getHmat(); |
| 79 |
|
RealType hz = hmat(2, 2); |
| 80 |
|
RealType Axy = hmat(0,0) * hmat(1, 1); |
| 81 |
|
prevEta = eta; |
| 82 |
< |
RealType sx = -hz * (press(0, 0) - targetPressure/OOPSEConstant::pressureConvert); |
| 83 |
< |
RealType sy = -hz * (press(1, 1) - targetPressure/OOPSEConstant::pressureConvert); |
| 82 |
> |
RealType sx = -hz * (press(0, 0) - targetPressure/PhysicalConstants::pressureConvert); |
| 83 |
> |
RealType sy = -hz * (press(1, 1) - targetPressure/PhysicalConstants::pressureConvert); |
| 84 |
|
eta(0,0) = oldEta(0, 0) - dt2 * Axy * (sx -surfaceTension) / (NkBT*tb2); |
| 85 |
|
eta(1,1) = oldEta(1, 1) - dt2 * Axy * (sy -surfaceTension) / (NkBT*tb2); |
| 86 |
|
eta(2,2) = oldEta(2, 2) + dt2 * instaVol * |
| 87 |
< |
(press(2, 2) - targetPressure/OOPSEConstant::pressureConvert) / (NkBT*tb2); |
| 87 |
> |
(press(2, 2) - targetPressure/PhysicalConstants::pressureConvert) / (NkBT*tb2); |
| 88 |
|
} |
| 89 |
|
|
| 90 |
|
void NPrT::calcVelScale(){ |
| 94 |
|
vScale(i, j) = eta(i, j); |
| 95 |
|
|
| 96 |
|
if (i == j) { |
| 97 |
< |
vScale(i, j) += chi; |
| 97 |
> |
vScale(i, j) += thermostat.first; |
| 98 |
|
} |
| 99 |
|
} |
| 100 |
|
} |
| 121 |
|
scaleMat(0, 0) = exp(dt*eta(0, 0)); |
| 122 |
|
scaleMat(1, 1) = exp(dt*eta(1, 1)); |
| 123 |
|
scaleMat(2, 2) = exp(dt*eta(2, 2)); |
| 124 |
< |
Mat3x3d hmat = currentSnapshot_->getHmat(); |
| 124 |
> |
Mat3x3d hmat = snap->getHmat(); |
| 125 |
|
hmat = hmat *scaleMat; |
| 126 |
< |
currentSnapshot_->setHmat(hmat); |
| 126 |
> |
snap->setHmat(hmat); |
| 127 |
|
|
| 128 |
|
} |
| 129 |
|
|
| 142 |
|
} |
| 143 |
|
|
| 144 |
|
RealType NPrT::calcConservedQuantity(){ |
| 145 |
< |
|
| 145 |
< |
chi= currentSnapshot_->getChi(); |
| 146 |
< |
integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); |
| 145 |
> |
thermostat = snap->getThermostat(); |
| 146 |
|
loadEta(); |
| 147 |
|
|
| 148 |
|
// We need NkBT a lot, so just set it here: This is the RAW number |
| 149 |
|
// of integrableObjects, so no subtraction or addition of constraints or |
| 150 |
|
// orientational degrees of freedom: |
| 151 |
< |
NkBT = info_->getNGlobalIntegrableObjects()*OOPSEConstant::kB *targetTemp; |
| 151 |
> |
NkBT = info_->getNGlobalIntegrableObjects()*PhysicalConstants::kB *targetTemp; |
| 152 |
|
|
| 153 |
|
// fkBT is used because the thermostat operates on more degrees of freedom |
| 154 |
|
// than the barostat (when there are particles with orientational degrees |
| 155 |
|
// of freedom). |
| 156 |
< |
fkBT = info_->getNdf()*OOPSEConstant::kB *targetTemp; |
| 156 |
> |
fkBT = info_->getNdf()*PhysicalConstants::kB *targetTemp; |
| 157 |
|
|
| 158 |
|
|
| 159 |
< |
RealType totalEnergy = thermo.getTotalE(); |
| 159 |
> |
RealType totalEnergy = thermo.getTotalEnergy(); |
| 160 |
|
|
| 161 |
< |
RealType thermostat_kinetic = fkBT * tt2 * chi * chi /(2.0 * OOPSEConstant::energyConvert); |
| 161 |
> |
RealType thermostat_kinetic = fkBT * tt2 * thermostat.first * thermostat.first /(2.0 * PhysicalConstants::energyConvert); |
| 162 |
|
|
| 163 |
< |
RealType thermostat_potential = fkBT* integralOfChidt / OOPSEConstant::energyConvert; |
| 163 |
> |
RealType thermostat_potential = fkBT* thermostat.second / PhysicalConstants::energyConvert; |
| 164 |
|
|
| 165 |
|
SquareMatrix<RealType, 3> tmp = eta.transpose() * eta; |
| 166 |
|
RealType trEta = tmp.trace(); |
| 167 |
|
|
| 168 |
< |
RealType barostat_kinetic = NkBT * tb2 * trEta /(2.0 * OOPSEConstant::energyConvert); |
| 168 |
> |
RealType barostat_kinetic = NkBT * tb2 * trEta /(2.0 * PhysicalConstants::energyConvert); |
| 169 |
|
|
| 170 |
< |
RealType barostat_potential = (targetPressure * thermo.getVolume() / OOPSEConstant::pressureConvert) /OOPSEConstant::energyConvert; |
| 170 |
> |
RealType barostat_potential = (targetPressure * thermo.getVolume() / PhysicalConstants::pressureConvert) /PhysicalConstants::energyConvert; |
| 171 |
|
|
| 172 |
< |
Mat3x3d hmat = currentSnapshot_->getHmat(); |
| 172 |
> |
Mat3x3d hmat = snap->getHmat(); |
| 173 |
|
RealType hz = hmat(2, 2); |
| 174 |
|
RealType area = hmat(0,0) * hmat(1, 1); |
| 175 |
|
|
| 176 |
|
RealType conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + |
| 177 |
< |
barostat_kinetic + barostat_potential - surfaceTension * area/ OOPSEConstant::energyConvert; |
| 177 |
> |
barostat_kinetic + barostat_potential - surfaceTension * area/ PhysicalConstants::energyConvert; |
| 178 |
|
|
| 179 |
|
return conservedQuantity; |
| 180 |
|
|
| 181 |
|
} |
| 182 |
|
|
| 183 |
|
void NPrT::loadEta() { |
| 184 |
< |
eta= currentSnapshot_->getEta(); |
| 184 |
> |
eta= snap->getBarostat(); |
| 185 |
|
|
| 186 |
|
//if (!eta.isDiagonal()) { |
| 187 |
|
// sprintf( painCave.errMsg, |
| 192 |
|
} |
| 193 |
|
|
| 194 |
|
void NPrT::saveEta() { |
| 195 |
< |
currentSnapshot_->setEta(eta); |
| 195 |
> |
snap->setBarostat(eta); |
| 196 |
|
} |
| 197 |
|
|
| 198 |
|
} |