6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
+ |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
+ |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
/** |
50 |
|
|
51 |
|
#include "integrators/NVE.hpp" |
52 |
|
#include "primitives/Molecule.hpp" |
53 |
< |
#include "utils/OOPSEConstant.hpp" |
53 |
> |
#include "utils/PhysicalConstants.hpp" |
54 |
|
|
55 |
< |
namespace oopse { |
55 |
> |
namespace OpenMD { |
56 |
|
|
57 |
|
|
58 |
|
NVE::NVE(SimInfo* info) : VelocityVerletIntegrator(info){ |
63 |
|
SimInfo::MoleculeIterator i; |
64 |
|
Molecule::IntegrableObjectIterator j; |
65 |
|
Molecule* mol; |
66 |
< |
StuntDouble* integrableObject; |
66 |
> |
StuntDouble* sd; |
67 |
|
Vector3d vel; |
68 |
|
Vector3d pos; |
69 |
|
Vector3d frc; |
71 |
|
Vector3d ji; |
72 |
|
RealType mass; |
73 |
|
|
74 |
< |
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
75 |
< |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
75 |
< |
integrableObject = mol->nextIntegrableObject(j)) { |
74 |
> |
for (mol = info_->beginMolecule(i); mol != NULL; |
75 |
> |
mol = info_->nextMolecule(i)) { |
76 |
|
|
77 |
< |
vel =integrableObject->getVel(); |
78 |
< |
pos = integrableObject->getPos(); |
79 |
< |
frc = integrableObject->getFrc(); |
80 |
< |
mass = integrableObject->getMass(); |
77 |
> |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
78 |
> |
sd = mol->nextIntegrableObject(j)) { |
79 |
> |
|
80 |
> |
vel = sd->getVel(); |
81 |
> |
pos = sd->getPos(); |
82 |
> |
frc = sd->getFrc(); |
83 |
> |
mass = sd->getMass(); |
84 |
|
|
85 |
|
// velocity half step |
86 |
< |
vel += (dt2 /mass * OOPSEConstant::energyConvert) * frc; |
86 |
> |
vel += (dt2 /mass * PhysicalConstants::energyConvert) * frc; |
87 |
|
|
88 |
|
// position whole step |
89 |
|
pos += dt * vel; |
90 |
|
|
91 |
< |
integrableObject->setVel(vel); |
92 |
< |
integrableObject->setPos(pos); |
91 |
> |
sd->setVel(vel); |
92 |
> |
sd->setPos(pos); |
93 |
|
|
94 |
< |
if (integrableObject->isDirectional()){ |
94 |
> |
if (sd->isDirectional()){ |
95 |
|
|
96 |
|
// get and convert the torque to body frame |
97 |
|
|
98 |
< |
Tb = integrableObject->lab2Body(integrableObject->getTrq()); |
98 |
> |
Tb = sd->lab2Body(sd->getTrq()); |
99 |
|
|
100 |
|
// get the angular momentum, and propagate a half step |
101 |
|
|
102 |
< |
ji = integrableObject->getJ(); |
102 |
> |
ji = sd->getJ(); |
103 |
|
|
104 |
< |
ji += (dt2 * OOPSEConstant::energyConvert) * Tb; |
104 |
> |
ji += (dt2 * PhysicalConstants::energyConvert) * Tb; |
105 |
|
|
106 |
< |
rotAlgo->rotate(integrableObject, ji, dt); |
106 |
> |
rotAlgo_->rotate(sd, ji, dt); |
107 |
|
|
108 |
< |
integrableObject->setJ(ji); |
108 |
> |
sd->setJ(ji); |
109 |
|
} |
110 |
|
|
111 |
|
|
112 |
|
} |
113 |
< |
} //end for(mol = info_->beginMolecule(i)) |
114 |
< |
|
115 |
< |
rattle->constraintA(); |
113 |
< |
|
113 |
> |
} |
114 |
> |
flucQ_->moveA(); |
115 |
> |
rattle_->constraintA(); |
116 |
|
} |
117 |
|
|
118 |
|
void NVE::moveB(){ |
119 |
|
SimInfo::MoleculeIterator i; |
120 |
|
Molecule::IntegrableObjectIterator j; |
121 |
|
Molecule* mol; |
122 |
< |
StuntDouble* integrableObject; |
122 |
> |
StuntDouble* sd; |
123 |
|
Vector3d vel; |
124 |
|
Vector3d frc; |
125 |
|
Vector3d Tb; |
126 |
|
Vector3d ji; |
127 |
|
RealType mass; |
128 |
|
|
129 |
< |
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
130 |
< |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
129 |
< |
integrableObject = mol->nextIntegrableObject(j)) { |
129 |
> |
for (mol = info_->beginMolecule(i); mol != NULL; |
130 |
> |
mol = info_->nextMolecule(i)) { |
131 |
|
|
132 |
< |
vel =integrableObject->getVel(); |
133 |
< |
frc = integrableObject->getFrc(); |
134 |
< |
mass = integrableObject->getMass(); |
132 |
> |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
133 |
> |
sd = mol->nextIntegrableObject(j)) { |
134 |
> |
|
135 |
> |
vel = sd->getVel(); |
136 |
> |
frc = sd->getFrc(); |
137 |
> |
mass = sd->getMass(); |
138 |
|
|
139 |
|
// velocity half step |
140 |
< |
vel += (dt2 /mass * OOPSEConstant::energyConvert) * frc; |
140 |
> |
vel += (dt2 /mass * PhysicalConstants::energyConvert) * frc; |
141 |
|
|
142 |
< |
integrableObject->setVel(vel); |
142 |
> |
sd->setVel(vel); |
143 |
|
|
144 |
< |
if (integrableObject->isDirectional()){ |
144 |
> |
if (sd->isDirectional()){ |
145 |
|
|
146 |
|
// get and convert the torque to body frame |
147 |
|
|
148 |
< |
Tb = integrableObject->lab2Body(integrableObject->getTrq()); |
148 |
> |
Tb = sd->lab2Body(sd->getTrq()); |
149 |
|
|
150 |
|
// get the angular momentum, and propagate a half step |
151 |
|
|
152 |
< |
ji = integrableObject->getJ(); |
152 |
> |
ji = sd->getJ(); |
153 |
|
|
154 |
< |
ji += (dt2 * OOPSEConstant::energyConvert) * Tb; |
154 |
> |
ji += (dt2 * PhysicalConstants::energyConvert) * Tb; |
155 |
|
|
156 |
< |
integrableObject->setJ(ji); |
156 |
> |
sd->setJ(ji); |
157 |
|
} |
158 |
|
|
159 |
|
|
160 |
|
} |
161 |
< |
} //end for(mol = info_->beginMolecule(i)) |
161 |
> |
} |
162 |
|
|
163 |
< |
|
164 |
< |
rattle->constraintB(); |
161 |
< |
|
163 |
> |
flucQ_->moveB(); |
164 |
> |
rattle_->constraintB(); |
165 |
|
} |
166 |
|
|
167 |
|
|
168 |
|
RealType NVE::calcConservedQuantity() { |
169 |
< |
return thermo.getTotalE() ; |
169 |
> |
return thermo.getTotalEnergy(); |
170 |
|
} |
171 |
|
|
172 |
< |
} //end namespace oopse |
172 |
> |
} //end namespace OpenMD |