36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
< |
* [4] Vardeman & Gezelter, in progress (2009). |
39 |
> |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
> |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
/** |
63 |
|
SimInfo::MoleculeIterator i; |
64 |
|
Molecule::IntegrableObjectIterator j; |
65 |
|
Molecule* mol; |
66 |
< |
StuntDouble* integrableObject; |
66 |
> |
StuntDouble* sd; |
67 |
|
Vector3d vel; |
68 |
|
Vector3d pos; |
69 |
|
Vector3d frc; |
71 |
|
Vector3d ji; |
72 |
|
RealType mass; |
73 |
|
|
74 |
< |
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
75 |
< |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
75 |
< |
integrableObject = mol->nextIntegrableObject(j)) { |
74 |
> |
for (mol = info_->beginMolecule(i); mol != NULL; |
75 |
> |
mol = info_->nextMolecule(i)) { |
76 |
|
|
77 |
< |
vel =integrableObject->getVel(); |
78 |
< |
pos = integrableObject->getPos(); |
79 |
< |
frc = integrableObject->getFrc(); |
80 |
< |
mass = integrableObject->getMass(); |
77 |
> |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
78 |
> |
sd = mol->nextIntegrableObject(j)) { |
79 |
> |
|
80 |
> |
vel = sd->getVel(); |
81 |
> |
pos = sd->getPos(); |
82 |
> |
frc = sd->getFrc(); |
83 |
> |
mass = sd->getMass(); |
84 |
|
|
85 |
|
// velocity half step |
86 |
|
vel += (dt2 /mass * PhysicalConstants::energyConvert) * frc; |
88 |
|
// position whole step |
89 |
|
pos += dt * vel; |
90 |
|
|
91 |
< |
integrableObject->setVel(vel); |
92 |
< |
integrableObject->setPos(pos); |
91 |
> |
sd->setVel(vel); |
92 |
> |
sd->setPos(pos); |
93 |
|
|
94 |
< |
if (integrableObject->isDirectional()){ |
94 |
> |
if (sd->isDirectional()){ |
95 |
|
|
96 |
|
// get and convert the torque to body frame |
97 |
|
|
98 |
< |
Tb = integrableObject->lab2Body(integrableObject->getTrq()); |
98 |
> |
Tb = sd->lab2Body(sd->getTrq()); |
99 |
|
|
100 |
|
// get the angular momentum, and propagate a half step |
101 |
|
|
102 |
< |
ji = integrableObject->getJ(); |
102 |
> |
ji = sd->getJ(); |
103 |
|
|
104 |
|
ji += (dt2 * PhysicalConstants::energyConvert) * Tb; |
105 |
|
|
106 |
< |
rotAlgo->rotate(integrableObject, ji, dt); |
106 |
> |
rotAlgo_->rotate(sd, ji, dt); |
107 |
|
|
108 |
< |
integrableObject->setJ(ji); |
108 |
> |
sd->setJ(ji); |
109 |
|
} |
110 |
|
|
111 |
|
|
112 |
|
} |
113 |
< |
} //end for(mol = info_->beginMolecule(i)) |
114 |
< |
|
115 |
< |
rattle->constraintA(); |
113 |
< |
|
113 |
> |
} |
114 |
> |
flucQ_->moveA(); |
115 |
> |
rattle_->constraintA(); |
116 |
|
} |
117 |
|
|
118 |
|
void NVE::moveB(){ |
119 |
|
SimInfo::MoleculeIterator i; |
120 |
|
Molecule::IntegrableObjectIterator j; |
121 |
|
Molecule* mol; |
122 |
< |
StuntDouble* integrableObject; |
122 |
> |
StuntDouble* sd; |
123 |
|
Vector3d vel; |
124 |
|
Vector3d frc; |
125 |
|
Vector3d Tb; |
126 |
|
Vector3d ji; |
127 |
|
RealType mass; |
128 |
|
|
129 |
< |
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
130 |
< |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
129 |
< |
integrableObject = mol->nextIntegrableObject(j)) { |
129 |
> |
for (mol = info_->beginMolecule(i); mol != NULL; |
130 |
> |
mol = info_->nextMolecule(i)) { |
131 |
|
|
132 |
< |
vel =integrableObject->getVel(); |
133 |
< |
frc = integrableObject->getFrc(); |
134 |
< |
mass = integrableObject->getMass(); |
132 |
> |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
133 |
> |
sd = mol->nextIntegrableObject(j)) { |
134 |
> |
|
135 |
> |
vel = sd->getVel(); |
136 |
> |
frc = sd->getFrc(); |
137 |
> |
mass = sd->getMass(); |
138 |
|
|
139 |
|
// velocity half step |
140 |
|
vel += (dt2 /mass * PhysicalConstants::energyConvert) * frc; |
141 |
|
|
142 |
< |
integrableObject->setVel(vel); |
142 |
> |
sd->setVel(vel); |
143 |
|
|
144 |
< |
if (integrableObject->isDirectional()){ |
144 |
> |
if (sd->isDirectional()){ |
145 |
|
|
146 |
|
// get and convert the torque to body frame |
147 |
|
|
148 |
< |
Tb = integrableObject->lab2Body(integrableObject->getTrq()); |
148 |
> |
Tb = sd->lab2Body(sd->getTrq()); |
149 |
|
|
150 |
|
// get the angular momentum, and propagate a half step |
151 |
|
|
152 |
< |
ji = integrableObject->getJ(); |
152 |
> |
ji = sd->getJ(); |
153 |
|
|
154 |
|
ji += (dt2 * PhysicalConstants::energyConvert) * Tb; |
155 |
|
|
156 |
< |
integrableObject->setJ(ji); |
156 |
> |
sd->setJ(ji); |
157 |
|
} |
158 |
|
|
159 |
|
|
160 |
|
} |
161 |
< |
} //end for(mol = info_->beginMolecule(i)) |
161 |
> |
} |
162 |
|
|
163 |
< |
|
164 |
< |
rattle->constraintB(); |
161 |
< |
|
163 |
> |
flucQ_->moveB(); |
164 |
> |
rattle_->constraintB(); |
165 |
|
} |
166 |
|
|
167 |
|
|
168 |
|
RealType NVE::calcConservedQuantity() { |
169 |
< |
return thermo.getTotalE() ; |
169 |
> |
return thermo.getTotalEnergy(); |
170 |
|
} |
171 |
|
|
172 |
|
} //end namespace OpenMD |