| 6 | 
  | 
 * redistribute this software in source and binary code form, provided | 
| 7 | 
  | 
 * that the following conditions are met: | 
| 8 | 
  | 
 * | 
| 9 | 
< | 
 * 1. Acknowledgement of the program authors must be made in any | 
| 10 | 
< | 
 *    publication of scientific results based in part on use of the | 
| 11 | 
< | 
 *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | 
< | 
 *    the article in which the program was described (Matthew | 
| 13 | 
< | 
 *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | 
< | 
 *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | 
< | 
 *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | 
< | 
 *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | 
< | 
 * | 
| 18 | 
< | 
 * 2. Redistributions of source code must retain the above copyright | 
| 9 | 
> | 
 * 1. Redistributions of source code must retain the above copyright | 
| 10 | 
  | 
 *    notice, this list of conditions and the following disclaimer. | 
| 11 | 
  | 
 * | 
| 12 | 
< | 
 * 3. Redistributions in binary form must reproduce the above copyright | 
| 12 | 
> | 
 * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | 
  | 
 *    notice, this list of conditions and the following disclaimer in the | 
| 14 | 
  | 
 *    documentation and/or other materials provided with the | 
| 15 | 
  | 
 *    distribution. | 
| 28 | 
  | 
 * arising out of the use of or inability to use software, even if the | 
| 29 | 
  | 
 * University of Notre Dame has been advised of the possibility of | 
| 30 | 
  | 
 * such damages. | 
| 31 | 
+ | 
 * | 
| 32 | 
+ | 
 * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | 
+ | 
 * research, please cite the appropriate papers when you publish your | 
| 34 | 
+ | 
 * work.  Good starting points are: | 
| 35 | 
+ | 
 *                                                                       | 
| 36 | 
+ | 
 * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).              | 
| 37 | 
+ | 
 * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).           | 
| 38 | 
+ | 
 * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).           | 
| 39 | 
+ | 
 * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | 
+ | 
 * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | 
  | 
 */ | 
| 42 | 
  | 
  | 
| 43 | 
  | 
/** | 
| 44 | 
  | 
 * @file NVE.cpp | 
| 45 | 
  | 
 * @author tlin | 
| 46 | 
  | 
 * @date 11/08/2004 | 
| 46 | 
– | 
 * @time 15:13am | 
| 47 | 
  | 
 * @version 1.0 | 
| 48 | 
  | 
 */ | 
| 49 | 
  | 
 | 
| 50 | 
  | 
#include "integrators/NVE.hpp" | 
| 51 | 
  | 
#include "primitives/Molecule.hpp" | 
| 52 | 
< | 
#include "utils/OOPSEConstant.hpp" | 
| 52 | 
> | 
#include "utils/PhysicalConstants.hpp" | 
| 53 | 
  | 
 | 
| 54 | 
< | 
namespace oopse { | 
| 54 | 
> | 
namespace OpenMD { | 
| 55 | 
  | 
 | 
| 56 | 
  | 
 | 
| 57 | 
  | 
  NVE::NVE(SimInfo* info) : VelocityVerletIntegrator(info){ | 
| 62 | 
  | 
    SimInfo::MoleculeIterator i; | 
| 63 | 
  | 
    Molecule::IntegrableObjectIterator  j; | 
| 64 | 
  | 
    Molecule* mol; | 
| 65 | 
< | 
    StuntDouble* integrableObject; | 
| 65 | 
> | 
    StuntDouble* sd; | 
| 66 | 
  | 
    Vector3d vel; | 
| 67 | 
  | 
    Vector3d pos; | 
| 68 | 
  | 
    Vector3d frc; | 
| 70 | 
  | 
    Vector3d ji; | 
| 71 | 
  | 
    RealType mass; | 
| 72 | 
  | 
     | 
| 73 | 
< | 
    for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { | 
| 74 | 
< | 
      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 75 | 
< | 
           integrableObject = mol->nextIntegrableObject(j)) { | 
| 73 | 
> | 
    for (mol = info_->beginMolecule(i); mol != NULL;  | 
| 74 | 
> | 
         mol = info_->nextMolecule(i)) { | 
| 75 | 
  | 
 | 
| 76 | 
< | 
        vel =integrableObject->getVel(); | 
| 77 | 
< | 
        pos = integrableObject->getPos(); | 
| 78 | 
< | 
        frc = integrableObject->getFrc(); | 
| 79 | 
< | 
        mass = integrableObject->getMass(); | 
| 76 | 
> | 
      for (sd = mol->beginIntegrableObject(j); sd != NULL; | 
| 77 | 
> | 
           sd = mol->nextIntegrableObject(j)) { | 
| 78 | 
> | 
 | 
| 79 | 
> | 
        vel = sd->getVel(); | 
| 80 | 
> | 
        pos = sd->getPos(); | 
| 81 | 
> | 
        frc = sd->getFrc(); | 
| 82 | 
> | 
        mass = sd->getMass(); | 
| 83 | 
  | 
                 | 
| 84 | 
  | 
        // velocity half step | 
| 85 | 
< | 
        vel += (dt2 /mass * OOPSEConstant::energyConvert) * frc; | 
| 85 | 
> | 
        vel += (dt2 /mass * PhysicalConstants::energyConvert) * frc; | 
| 86 | 
  | 
 | 
| 87 | 
  | 
        // position whole step | 
| 88 | 
  | 
        pos += dt * vel; | 
| 89 | 
  | 
 | 
| 90 | 
< | 
        integrableObject->setVel(vel); | 
| 91 | 
< | 
        integrableObject->setPos(pos); | 
| 90 | 
> | 
        sd->setVel(vel); | 
| 91 | 
> | 
        sd->setPos(pos); | 
| 92 | 
  | 
 | 
| 93 | 
< | 
        if (integrableObject->isDirectional()){ | 
| 93 | 
> | 
        if (sd->isDirectional()){ | 
| 94 | 
  | 
 | 
| 95 | 
  | 
          // get and convert the torque to body frame | 
| 96 | 
  | 
 | 
| 97 | 
< | 
          Tb = integrableObject->lab2Body(integrableObject->getTrq()); | 
| 97 | 
> | 
          Tb = sd->lab2Body(sd->getTrq()); | 
| 98 | 
  | 
 | 
| 99 | 
  | 
          // get the angular momentum, and propagate a half step | 
| 100 | 
  | 
 | 
| 101 | 
< | 
          ji = integrableObject->getJ(); | 
| 101 | 
> | 
          ji = sd->getJ(); | 
| 102 | 
  | 
 | 
| 103 | 
< | 
          ji += (dt2  * OOPSEConstant::energyConvert) * Tb; | 
| 103 | 
> | 
          ji += (dt2  * PhysicalConstants::energyConvert) * Tb; | 
| 104 | 
  | 
 | 
| 105 | 
< | 
          rotAlgo->rotate(integrableObject, ji, dt); | 
| 105 | 
> | 
          rotAlgo_->rotate(sd, ji, dt); | 
| 106 | 
  | 
 | 
| 107 | 
< | 
          integrableObject->setJ(ji); | 
| 107 | 
> | 
          sd->setJ(ji); | 
| 108 | 
  | 
        } | 
| 109 | 
  | 
 | 
| 110 | 
  | 
             | 
| 111 | 
  | 
      } | 
| 112 | 
< | 
    } //end for(mol = info_->beginMolecule(i)) | 
| 113 | 
< | 
     | 
| 114 | 
< | 
    rattle->constraintA(); | 
| 113 | 
< | 
     | 
| 112 | 
> | 
    } | 
| 113 | 
> | 
    flucQ_->moveA(); | 
| 114 | 
> | 
    rattle_->constraintA();     | 
| 115 | 
  | 
  }     | 
| 116 | 
  | 
 | 
| 117 | 
  | 
  void NVE::moveB(){ | 
| 118 | 
  | 
    SimInfo::MoleculeIterator i; | 
| 119 | 
  | 
    Molecule::IntegrableObjectIterator  j; | 
| 120 | 
  | 
    Molecule* mol; | 
| 121 | 
< | 
    StuntDouble* integrableObject; | 
| 121 | 
> | 
    StuntDouble* sd; | 
| 122 | 
  | 
    Vector3d vel; | 
| 123 | 
  | 
    Vector3d frc; | 
| 124 | 
  | 
    Vector3d Tb; | 
| 125 | 
  | 
    Vector3d ji; | 
| 126 | 
  | 
    RealType mass; | 
| 127 | 
  | 
     | 
| 128 | 
< | 
    for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { | 
| 129 | 
< | 
      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 129 | 
< | 
           integrableObject = mol->nextIntegrableObject(j)) { | 
| 128 | 
> | 
    for (mol = info_->beginMolecule(i); mol != NULL;  | 
| 129 | 
> | 
         mol = info_->nextMolecule(i)) { | 
| 130 | 
  | 
 | 
| 131 | 
< | 
        vel =integrableObject->getVel(); | 
| 132 | 
< | 
        frc = integrableObject->getFrc(); | 
| 133 | 
< | 
        mass = integrableObject->getMass(); | 
| 131 | 
> | 
      for (sd = mol->beginIntegrableObject(j); sd != NULL; | 
| 132 | 
> | 
           sd = mol->nextIntegrableObject(j)) { | 
| 133 | 
> | 
 | 
| 134 | 
> | 
        vel = sd->getVel(); | 
| 135 | 
> | 
        frc = sd->getFrc(); | 
| 136 | 
> | 
        mass = sd->getMass(); | 
| 137 | 
  | 
                 | 
| 138 | 
  | 
        // velocity half step | 
| 139 | 
< | 
        vel += (dt2 /mass * OOPSEConstant::energyConvert) * frc; | 
| 139 | 
> | 
        vel += (dt2 /mass * PhysicalConstants::energyConvert) * frc; | 
| 140 | 
  | 
                 | 
| 141 | 
< | 
        integrableObject->setVel(vel); | 
| 141 | 
> | 
        sd->setVel(vel); | 
| 142 | 
  | 
 | 
| 143 | 
< | 
        if (integrableObject->isDirectional()){ | 
| 143 | 
> | 
        if (sd->isDirectional()){ | 
| 144 | 
  | 
 | 
| 145 | 
  | 
          // get and convert the torque to body frame | 
| 146 | 
  | 
 | 
| 147 | 
< | 
          Tb = integrableObject->lab2Body(integrableObject->getTrq()); | 
| 147 | 
> | 
          Tb = sd->lab2Body(sd->getTrq()); | 
| 148 | 
  | 
 | 
| 149 | 
  | 
          // get the angular momentum, and propagate a half step | 
| 150 | 
  | 
 | 
| 151 | 
< | 
          ji = integrableObject->getJ(); | 
| 151 | 
> | 
          ji = sd->getJ(); | 
| 152 | 
  | 
 | 
| 153 | 
< | 
          ji += (dt2  * OOPSEConstant::energyConvert) * Tb; | 
| 153 | 
> | 
          ji += (dt2  * PhysicalConstants::energyConvert) * Tb; | 
| 154 | 
  | 
 | 
| 155 | 
< | 
          integrableObject->setJ(ji); | 
| 155 | 
> | 
          sd->setJ(ji); | 
| 156 | 
  | 
        } | 
| 157 | 
  | 
 | 
| 158 | 
  | 
             | 
| 159 | 
  | 
      } | 
| 160 | 
< | 
    } //end for(mol = info_->beginMolecule(i)) | 
| 160 | 
> | 
    } | 
| 161 | 
  | 
   | 
| 162 | 
< | 
 | 
| 163 | 
< | 
    rattle->constraintB(); | 
| 161 | 
< | 
 | 
| 162 | 
> | 
    flucQ_->moveB(); | 
| 163 | 
> | 
    rattle_->constraintB(); | 
| 164 | 
  | 
  } | 
| 165 | 
  | 
 | 
| 166 | 
  | 
 | 
| 167 | 
  | 
  RealType NVE::calcConservedQuantity() { | 
| 168 | 
< | 
    return thermo.getTotalE(); | 
| 168 | 
> | 
    return thermo.getTotalEnergy(); | 
| 169 | 
  | 
  } | 
| 170 | 
  | 
 | 
| 171 | 
< | 
} //end namespace oopse | 
| 171 | 
> | 
} //end namespace OpenMD |