1 |
gezelter |
507 |
/* |
2 |
gezelter |
246 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
|
|
* |
4 |
|
|
* The University of Notre Dame grants you ("Licensee") a |
5 |
|
|
* non-exclusive, royalty free, license to use, modify and |
6 |
|
|
* redistribute this software in source and binary code form, provided |
7 |
|
|
* that the following conditions are met: |
8 |
|
|
* |
9 |
gezelter |
1390 |
* 1. Redistributions of source code must retain the above copyright |
10 |
gezelter |
246 |
* notice, this list of conditions and the following disclaimer. |
11 |
|
|
* |
12 |
gezelter |
1390 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
gezelter |
246 |
* notice, this list of conditions and the following disclaimer in the |
14 |
|
|
* documentation and/or other materials provided with the |
15 |
|
|
* distribution. |
16 |
|
|
* |
17 |
|
|
* This software is provided "AS IS," without a warranty of any |
18 |
|
|
* kind. All express or implied conditions, representations and |
19 |
|
|
* warranties, including any implied warranty of merchantability, |
20 |
|
|
* fitness for a particular purpose or non-infringement, are hereby |
21 |
|
|
* excluded. The University of Notre Dame and its licensors shall not |
22 |
|
|
* be liable for any damages suffered by licensee as a result of |
23 |
|
|
* using, modifying or distributing the software or its |
24 |
|
|
* derivatives. In no event will the University of Notre Dame or its |
25 |
|
|
* licensors be liable for any lost revenue, profit or data, or for |
26 |
|
|
* direct, indirect, special, consequential, incidental or punitive |
27 |
|
|
* damages, however caused and regardless of the theory of liability, |
28 |
|
|
* arising out of the use of or inability to use software, even if the |
29 |
|
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
|
* such damages. |
31 |
gezelter |
1390 |
* |
32 |
|
|
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
|
|
* research, please cite the appropriate papers when you publish your |
34 |
|
|
* work. Good starting points are: |
35 |
|
|
* |
36 |
|
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
gezelter |
1879 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
gezelter |
1782 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
|
|
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
gezelter |
246 |
*/ |
42 |
|
|
|
43 |
|
|
#include "integrators/NVT.hpp" |
44 |
|
|
#include "primitives/Molecule.hpp" |
45 |
tim |
3 |
#include "utils/simError.h" |
46 |
gezelter |
1390 |
#include "utils/PhysicalConstants.hpp" |
47 |
gezelter |
2 |
|
48 |
gezelter |
1390 |
namespace OpenMD { |
49 |
gezelter |
2 |
|
50 |
gezelter |
2071 |
NVT::NVT(SimInfo* info) : VelocityVerletIntegrator(info), maxIterNum_(4), |
51 |
|
|
chiTolerance_(1e-6) { |
52 |
gezelter |
2 |
|
53 |
gezelter |
246 |
Globals* simParams = info_->getSimParams(); |
54 |
gezelter |
2 |
|
55 |
tim |
665 |
if (!simParams->getUseIntialExtendedSystemState()) { |
56 |
gezelter |
1782 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
57 |
|
|
snap->setThermostat(make_pair(0.0, 0.0)); |
58 |
gezelter |
246 |
} |
59 |
|
|
|
60 |
|
|
if (!simParams->haveTargetTemp()) { |
61 |
gezelter |
507 |
sprintf(painCave.errMsg, "You can't use the NVT integrator without a targetTemp_!\n"); |
62 |
|
|
painCave.isFatal = 1; |
63 |
gezelter |
1390 |
painCave.severity = OPENMD_ERROR; |
64 |
gezelter |
507 |
simError(); |
65 |
gezelter |
246 |
} else { |
66 |
gezelter |
507 |
targetTemp_ = simParams->getTargetTemp(); |
67 |
gezelter |
246 |
} |
68 |
gezelter |
2 |
|
69 |
gezelter |
1277 |
// We must set tauThermostat. |
70 |
gezelter |
2 |
|
71 |
gezelter |
246 |
if (!simParams->haveTauThermostat()) { |
72 |
gezelter |
507 |
sprintf(painCave.errMsg, "If you use the constant temperature\n" |
73 |
gezelter |
1277 |
"\tintegrator, you must set tauThermostat.\n"); |
74 |
gezelter |
2 |
|
75 |
gezelter |
1390 |
painCave.severity = OPENMD_ERROR; |
76 |
gezelter |
507 |
painCave.isFatal = 1; |
77 |
|
|
simError(); |
78 |
gezelter |
246 |
} else { |
79 |
gezelter |
507 |
tauThermostat_ = simParams->getTauThermostat(); |
80 |
gezelter |
2 |
} |
81 |
|
|
|
82 |
gezelter |
1782 |
updateSizes(); |
83 |
gezelter |
507 |
} |
84 |
gezelter |
2 |
|
85 |
gezelter |
1782 |
void NVT::doUpdateSizes() { |
86 |
gezelter |
246 |
oldVel_.resize(info_->getNIntegrableObjects()); |
87 |
gezelter |
1782 |
oldJi_.resize(info_->getNIntegrableObjects()); |
88 |
gezelter |
507 |
} |
89 |
gezelter |
1782 |
|
90 |
gezelter |
507 |
void NVT::moveA() { |
91 |
gezelter |
246 |
SimInfo::MoleculeIterator i; |
92 |
|
|
Molecule::IntegrableObjectIterator j; |
93 |
|
|
Molecule* mol; |
94 |
gezelter |
1782 |
StuntDouble* sd; |
95 |
gezelter |
246 |
Vector3d Tb; |
96 |
|
|
Vector3d ji; |
97 |
tim |
963 |
RealType mass; |
98 |
gezelter |
246 |
Vector3d vel; |
99 |
|
|
Vector3d pos; |
100 |
|
|
Vector3d frc; |
101 |
gezelter |
2 |
|
102 |
gezelter |
1782 |
pair<RealType, RealType> thermostat = snap->getThermostat(); |
103 |
|
|
|
104 |
gezelter |
246 |
// We need the temperature at time = t for the chi update below: |
105 |
gezelter |
2 |
|
106 |
tim |
963 |
RealType instTemp = thermo.getTemperature(); |
107 |
gezelter |
2 |
|
108 |
gezelter |
1782 |
for (mol = info_->beginMolecule(i); mol != NULL; |
109 |
|
|
mol = info_->nextMolecule(i)) { |
110 |
gezelter |
2 |
|
111 |
gezelter |
1782 |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
112 |
|
|
sd = mol->nextIntegrableObject(j)) { |
113 |
gezelter |
2 |
|
114 |
gezelter |
1782 |
vel = sd->getVel(); |
115 |
|
|
pos = sd->getPos(); |
116 |
|
|
frc = sd->getFrc(); |
117 |
gezelter |
2 |
|
118 |
gezelter |
1782 |
mass = sd->getMass(); |
119 |
|
|
|
120 |
|
|
// velocity half step (use chi from previous step here): |
121 |
|
|
vel += dt2 *PhysicalConstants::energyConvert/mass*frc |
122 |
|
|
- dt2*thermostat.first*vel; |
123 |
gezelter |
246 |
|
124 |
|
|
// position whole step |
125 |
|
|
pos += dt * vel; |
126 |
gezelter |
2 |
|
127 |
gezelter |
1782 |
sd->setVel(vel); |
128 |
|
|
sd->setPos(pos); |
129 |
gezelter |
2 |
|
130 |
gezelter |
1782 |
if (sd->isDirectional()) { |
131 |
gezelter |
2 |
|
132 |
gezelter |
507 |
//convert the torque to body frame |
133 |
gezelter |
1782 |
Tb = sd->lab2Body(sd->getTrq()); |
134 |
gezelter |
2 |
|
135 |
gezelter |
507 |
// get the angular momentum, and propagate a half step |
136 |
gezelter |
2 |
|
137 |
gezelter |
1782 |
ji = sd->getJ(); |
138 |
gezelter |
2 |
|
139 |
gezelter |
1782 |
ji += dt2*PhysicalConstants::energyConvert*Tb |
140 |
|
|
- dt2*thermostat.first *ji; |
141 |
gezelter |
2 |
|
142 |
gezelter |
1782 |
rotAlgo_->rotate(sd, ji, dt); |
143 |
|
|
|
144 |
|
|
sd->setJ(ji); |
145 |
gezelter |
246 |
} |
146 |
gezelter |
507 |
} |
147 |
gezelter |
2 |
|
148 |
|
|
} |
149 |
gezelter |
246 |
|
150 |
gezelter |
1782 |
flucQ_->moveA(); |
151 |
|
|
rattle_->constraintA(); |
152 |
gezelter |
2 |
|
153 |
gezelter |
246 |
// Finally, evolve chi a half step (just like a velocity) using |
154 |
|
|
// temperature at time t, not time t+dt/2 |
155 |
gezelter |
2 |
|
156 |
gezelter |
1782 |
thermostat.first += dt2 * (instTemp / targetTemp_ - 1.0) |
157 |
|
|
/ (tauThermostat_ * tauThermostat_); |
158 |
|
|
thermostat.second += thermostat.first * dt2; |
159 |
gezelter |
2 |
|
160 |
gezelter |
1782 |
snap->setThermostat(thermostat); |
161 |
gezelter |
507 |
} |
162 |
gezelter |
2 |
|
163 |
gezelter |
507 |
void NVT::moveB() { |
164 |
gezelter |
246 |
SimInfo::MoleculeIterator i; |
165 |
|
|
Molecule::IntegrableObjectIterator j; |
166 |
|
|
Molecule* mol; |
167 |
gezelter |
1782 |
StuntDouble* sd; |
168 |
gezelter |
246 |
|
169 |
|
|
Vector3d Tb; |
170 |
|
|
Vector3d ji; |
171 |
|
|
Vector3d vel; |
172 |
|
|
Vector3d frc; |
173 |
tim |
963 |
RealType mass; |
174 |
|
|
RealType instTemp; |
175 |
gezelter |
246 |
int index; |
176 |
|
|
// Set things up for the iteration: |
177 |
gezelter |
2 |
|
178 |
gezelter |
1782 |
pair<RealType, RealType> thermostat = snap->getThermostat(); |
179 |
|
|
RealType oldChi = thermostat.first; |
180 |
tim |
963 |
RealType prevChi; |
181 |
gezelter |
2 |
|
182 |
gezelter |
246 |
index = 0; |
183 |
gezelter |
1782 |
for (mol = info_->beginMolecule(i); mol != NULL; |
184 |
|
|
mol = info_->nextMolecule(i)) { |
185 |
gezelter |
2 |
|
186 |
gezelter |
1782 |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
187 |
|
|
sd = mol->nextIntegrableObject(j)) { |
188 |
|
|
|
189 |
|
|
oldVel_[index] = sd->getVel(); |
190 |
|
|
|
191 |
|
|
if (sd->isDirectional()) |
192 |
|
|
oldJi_[index] = sd->getJ(); |
193 |
|
|
|
194 |
gezelter |
507 |
++index; |
195 |
gezelter |
1782 |
} |
196 |
gezelter |
2 |
} |
197 |
|
|
|
198 |
gezelter |
246 |
// do the iteration: |
199 |
gezelter |
2 |
|
200 |
gezelter |
246 |
for(int k = 0; k < maxIterNum_; k++) { |
201 |
gezelter |
507 |
index = 0; |
202 |
|
|
instTemp = thermo.getTemperature(); |
203 |
gezelter |
2 |
|
204 |
gezelter |
507 |
// evolve chi another half step using the temperature at t + dt/2 |
205 |
gezelter |
2 |
|
206 |
gezelter |
1782 |
prevChi = thermostat.first; |
207 |
|
|
thermostat.first = oldChi + dt2 * (instTemp / targetTemp_ - 1.0) |
208 |
|
|
/ (tauThermostat_ * tauThermostat_); |
209 |
gezelter |
2 |
|
210 |
gezelter |
1782 |
for (mol = info_->beginMolecule(i); mol != NULL; |
211 |
|
|
mol = info_->nextMolecule(i)) { |
212 |
|
|
|
213 |
|
|
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
214 |
|
|
sd = mol->nextIntegrableObject(j)) { |
215 |
gezelter |
2 |
|
216 |
gezelter |
1782 |
frc = sd->getFrc(); |
217 |
|
|
mass = sd->getMass(); |
218 |
gezelter |
2 |
|
219 |
gezelter |
507 |
// velocity half step |
220 |
gezelter |
1782 |
|
221 |
|
|
vel = oldVel_[index] |
222 |
|
|
+ dt2/mass*PhysicalConstants::energyConvert * frc |
223 |
|
|
- dt2*thermostat.first*oldVel_[index]; |
224 |
gezelter |
246 |
|
225 |
gezelter |
1782 |
sd->setVel(vel); |
226 |
gezelter |
2 |
|
227 |
gezelter |
1782 |
if (sd->isDirectional()) { |
228 |
gezelter |
2 |
|
229 |
gezelter |
507 |
// get and convert the torque to body frame |
230 |
gezelter |
2 |
|
231 |
gezelter |
1782 |
Tb = sd->lab2Body(sd->getTrq()); |
232 |
gezelter |
2 |
|
233 |
gezelter |
1782 |
ji = oldJi_[index] + dt2*PhysicalConstants::energyConvert*Tb |
234 |
|
|
- dt2*thermostat.first *oldJi_[index]; |
235 |
gezelter |
2 |
|
236 |
gezelter |
1782 |
sd->setJ(ji); |
237 |
gezelter |
507 |
} |
238 |
gezelter |
2 |
|
239 |
|
|
|
240 |
gezelter |
507 |
++index; |
241 |
|
|
} |
242 |
|
|
} |
243 |
gezelter |
2 |
|
244 |
gezelter |
1782 |
rattle_->constraintB(); |
245 |
gezelter |
2 |
|
246 |
gezelter |
1782 |
if (fabs(prevChi - thermostat.first) <= chiTolerance_) |
247 |
gezelter |
507 |
break; |
248 |
gezelter |
2 |
|
249 |
gezelter |
246 |
} |
250 |
gezelter |
2 |
|
251 |
gezelter |
1782 |
flucQ_->moveB(); |
252 |
gezelter |
2 |
|
253 |
gezelter |
1782 |
thermostat.second += dt2 * thermostat.first; |
254 |
|
|
snap->setThermostat(thermostat); |
255 |
gezelter |
507 |
} |
256 |
gezelter |
2 |
|
257 |
tim |
546 |
void NVT::resetIntegrator() { |
258 |
gezelter |
1782 |
snap->setThermostat(make_pair(0.0, 0.0)); |
259 |
tim |
546 |
} |
260 |
|
|
|
261 |
tim |
963 |
RealType NVT::calcConservedQuantity() { |
262 |
gezelter |
2 |
|
263 |
gezelter |
1782 |
pair<RealType, RealType> thermostat = snap->getThermostat(); |
264 |
tim |
963 |
RealType conservedQuantity; |
265 |
|
|
RealType fkBT; |
266 |
|
|
RealType Energy; |
267 |
|
|
RealType thermostat_kinetic; |
268 |
|
|
RealType thermostat_potential; |
269 |
gezelter |
246 |
|
270 |
gezelter |
1390 |
fkBT = info_->getNdf() *PhysicalConstants::kB *targetTemp_; |
271 |
gezelter |
2 |
|
272 |
gezelter |
1782 |
Energy = thermo.getTotalEnergy(); |
273 |
gezelter |
2 |
|
274 |
gezelter |
1782 |
thermostat_kinetic = fkBT * tauThermostat_ * tauThermostat_ * thermostat.first * thermostat.first / (2.0 * PhysicalConstants::energyConvert); |
275 |
gezelter |
2 |
|
276 |
gezelter |
1782 |
thermostat_potential = fkBT * thermostat.second / PhysicalConstants::energyConvert; |
277 |
gezelter |
2 |
|
278 |
gezelter |
246 |
conservedQuantity = Energy + thermostat_kinetic + thermostat_potential; |
279 |
gezelter |
2 |
|
280 |
gezelter |
246 |
return conservedQuantity; |
281 |
gezelter |
507 |
} |
282 |
gezelter |
2 |
|
283 |
|
|
|
284 |
gezelter |
1390 |
}//end namespace OpenMD |