| 6 |
|
* redistribute this software in source and binary code form, provided |
| 7 |
|
* that the following conditions are met: |
| 8 |
|
* |
| 9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
| 10 |
< |
* publication of scientific results based in part on use of the |
| 11 |
< |
* program. An acceptable form of acknowledgement is citation of |
| 12 |
< |
* the article in which the program was described (Matthew |
| 13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
| 14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
| 15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
| 16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
| 17 |
< |
* |
| 18 |
< |
* 2. Redistributions of source code must retain the above copyright |
| 9 |
> |
* 1. Redistributions of source code must retain the above copyright |
| 10 |
|
* notice, this list of conditions and the following disclaimer. |
| 11 |
|
* |
| 12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
| 12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
| 13 |
|
* notice, this list of conditions and the following disclaimer in the |
| 14 |
|
* documentation and/or other materials provided with the |
| 15 |
|
* distribution. |
| 28 |
|
* arising out of the use of or inability to use software, even if the |
| 29 |
|
* University of Notre Dame has been advised of the possibility of |
| 30 |
|
* such damages. |
| 31 |
+ |
* |
| 32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
| 33 |
+ |
* research, please cite the appropriate papers when you publish your |
| 34 |
+ |
* work. Good starting points are: |
| 35 |
+ |
* |
| 36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
| 37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
| 38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
| 39 |
+ |
* [4] Vardeman & Gezelter, in progress (2009). |
| 40 |
|
*/ |
| 41 |
|
|
| 42 |
|
#include "integrators/NVT.hpp" |
| 43 |
|
#include "primitives/Molecule.hpp" |
| 44 |
|
#include "utils/simError.h" |
| 45 |
< |
#include "utils/OOPSEConstant.hpp" |
| 45 |
> |
#include "utils/PhysicalConstants.hpp" |
| 46 |
|
|
| 47 |
< |
namespace oopse { |
| 47 |
> |
namespace OpenMD { |
| 48 |
|
|
| 49 |
|
NVT::NVT(SimInfo* info) : VelocityVerletIntegrator(info), chiTolerance_ (1e-6), maxIterNum_(4) { |
| 50 |
|
|
| 51 |
|
Globals* simParams = info_->getSimParams(); |
| 52 |
|
|
| 53 |
< |
if (!simParams->getUseInitXSstate()) { |
| 53 |
> |
if (!simParams->getUseIntialExtendedSystemState()) { |
| 54 |
|
Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 55 |
|
currSnapshot->setChi(0.0); |
| 56 |
|
currSnapshot->setIntegralOfChiDt(0.0); |
| 59 |
|
if (!simParams->haveTargetTemp()) { |
| 60 |
|
sprintf(painCave.errMsg, "You can't use the NVT integrator without a targetTemp_!\n"); |
| 61 |
|
painCave.isFatal = 1; |
| 62 |
< |
painCave.severity = OOPSE_ERROR; |
| 62 |
> |
painCave.severity = OPENMD_ERROR; |
| 63 |
|
simError(); |
| 64 |
|
} else { |
| 65 |
|
targetTemp_ = simParams->getTargetTemp(); |
| 66 |
|
} |
| 67 |
|
|
| 68 |
< |
// We must set tauThermostat_. |
| 68 |
> |
// We must set tauThermostat. |
| 69 |
|
|
| 70 |
|
if (!simParams->haveTauThermostat()) { |
| 71 |
|
sprintf(painCave.errMsg, "If you use the constant temperature\n" |
| 72 |
< |
"\tintegrator, you must set tauThermostat_.\n"); |
| 72 |
> |
"\tintegrator, you must set tauThermostat.\n"); |
| 73 |
|
|
| 74 |
< |
painCave.severity = OOPSE_ERROR; |
| 74 |
> |
painCave.severity = OPENMD_ERROR; |
| 75 |
|
painCave.isFatal = 1; |
| 76 |
|
simError(); |
| 77 |
|
} else { |
| 92 |
|
StuntDouble* integrableObject; |
| 93 |
|
Vector3d Tb; |
| 94 |
|
Vector3d ji; |
| 95 |
< |
double mass; |
| 95 |
> |
RealType mass; |
| 96 |
|
Vector3d vel; |
| 97 |
|
Vector3d pos; |
| 98 |
|
Vector3d frc; |
| 99 |
|
|
| 100 |
< |
double chi = currentSnapshot_->getChi(); |
| 101 |
< |
double integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); |
| 100 |
> |
RealType chi = currentSnapshot_->getChi(); |
| 101 |
> |
RealType integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); |
| 102 |
|
|
| 103 |
|
// We need the temperature at time = t for the chi update below: |
| 104 |
|
|
| 105 |
< |
double instTemp = thermo.getTemperature(); |
| 105 |
> |
RealType instTemp = thermo.getTemperature(); |
| 106 |
|
|
| 107 |
|
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
| 108 |
|
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
| 115 |
|
mass = integrableObject->getMass(); |
| 116 |
|
|
| 117 |
|
// velocity half step (use chi from previous step here): |
| 118 |
< |
//vel[j] += dt2 * ((frc[j] / mass ) * OOPSEConstant::energyConvert - vel[j]*chi); |
| 119 |
< |
vel += dt2 *OOPSEConstant::energyConvert/mass*frc - dt2*chi*vel; |
| 118 |
> |
//vel[j] += dt2 * ((frc[j] / mass ) * PhysicalConstants::energyConvert - vel[j]*chi); |
| 119 |
> |
vel += dt2 *PhysicalConstants::energyConvert/mass*frc - dt2*chi*vel; |
| 120 |
|
|
| 121 |
|
// position whole step |
| 122 |
|
//pos[j] += dt * vel[j]; |
| 134 |
|
|
| 135 |
|
ji = integrableObject->getJ(); |
| 136 |
|
|
| 137 |
< |
//ji[j] += dt2 * (Tb[j] * OOPSEConstant::energyConvert - ji[j]*chi); |
| 138 |
< |
ji += dt2*OOPSEConstant::energyConvert*Tb - dt2*chi *ji; |
| 137 |
> |
//ji[j] += dt2 * (Tb[j] * PhysicalConstants::energyConvert - ji[j]*chi); |
| 138 |
> |
ji += dt2*PhysicalConstants::energyConvert*Tb - dt2*chi *ji; |
| 139 |
|
rotAlgo->rotate(integrableObject, ji, dt); |
| 140 |
|
|
| 141 |
|
integrableObject->setJ(ji); |
| 167 |
|
Vector3d ji; |
| 168 |
|
Vector3d vel; |
| 169 |
|
Vector3d frc; |
| 170 |
< |
double mass; |
| 171 |
< |
double instTemp; |
| 170 |
> |
RealType mass; |
| 171 |
> |
RealType instTemp; |
| 172 |
|
int index; |
| 173 |
|
// Set things up for the iteration: |
| 174 |
|
|
| 175 |
< |
double chi = currentSnapshot_->getChi(); |
| 176 |
< |
double oldChi = chi; |
| 177 |
< |
double prevChi; |
| 178 |
< |
double integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); |
| 175 |
> |
RealType chi = currentSnapshot_->getChi(); |
| 176 |
> |
RealType oldChi = chi; |
| 177 |
> |
RealType prevChi; |
| 178 |
> |
RealType integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); |
| 179 |
|
|
| 180 |
|
index = 0; |
| 181 |
|
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
| 211 |
|
|
| 212 |
|
// velocity half step |
| 213 |
|
//for(j = 0; j < 3; j++) |
| 214 |
< |
// vel[j] = oldVel_[3*i+j] + dt2 * ((frc[j] / mass ) * OOPSEConstant::energyConvert - oldVel_[3*i + j]*chi); |
| 215 |
< |
vel = oldVel_[index] + dt2/mass*OOPSEConstant::energyConvert * frc - dt2*chi*oldVel_[index]; |
| 214 |
> |
// vel[j] = oldVel_[3*i+j] + dt2 * ((frc[j] / mass ) * PhysicalConstants::energyConvert - oldVel_[3*i + j]*chi); |
| 215 |
> |
vel = oldVel_[index] + dt2/mass*PhysicalConstants::energyConvert * frc - dt2*chi*oldVel_[index]; |
| 216 |
|
|
| 217 |
|
integrableObject->setVel(vel); |
| 218 |
|
|
| 223 |
|
Tb = integrableObject->lab2Body(integrableObject->getTrq()); |
| 224 |
|
|
| 225 |
|
//for(j = 0; j < 3; j++) |
| 226 |
< |
// ji[j] = oldJi_[3*i + j] + dt2 * (Tb[j] * OOPSEConstant::energyConvert - oldJi_[3*i+j]*chi); |
| 227 |
< |
ji = oldJi_[index] + dt2*OOPSEConstant::energyConvert*Tb - dt2*chi *oldJi_[index]; |
| 226 |
> |
// ji[j] = oldJi_[3*i + j] + dt2 * (Tb[j] * PhysicalConstants::energyConvert - oldJi_[3*i+j]*chi); |
| 227 |
> |
ji = oldJi_[index] + dt2*PhysicalConstants::energyConvert*Tb - dt2*chi *oldJi_[index]; |
| 228 |
|
|
| 229 |
|
integrableObject->setJ(ji); |
| 230 |
|
} |
| 253 |
|
currentSnapshot_->setIntegralOfChiDt(0.0); |
| 254 |
|
} |
| 255 |
|
|
| 256 |
< |
double NVT::calcConservedQuantity() { |
| 256 |
> |
RealType NVT::calcConservedQuantity() { |
| 257 |
|
|
| 258 |
< |
double chi = currentSnapshot_->getChi(); |
| 259 |
< |
double integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); |
| 260 |
< |
double conservedQuantity; |
| 261 |
< |
double fkBT; |
| 262 |
< |
double Energy; |
| 263 |
< |
double thermostat_kinetic; |
| 264 |
< |
double thermostat_potential; |
| 258 |
> |
RealType chi = currentSnapshot_->getChi(); |
| 259 |
> |
RealType integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); |
| 260 |
> |
RealType conservedQuantity; |
| 261 |
> |
RealType fkBT; |
| 262 |
> |
RealType Energy; |
| 263 |
> |
RealType thermostat_kinetic; |
| 264 |
> |
RealType thermostat_potential; |
| 265 |
|
|
| 266 |
< |
fkBT = info_->getNdf() *OOPSEConstant::kB *targetTemp_; |
| 266 |
> |
fkBT = info_->getNdf() *PhysicalConstants::kB *targetTemp_; |
| 267 |
|
|
| 268 |
|
Energy = thermo.getTotalE(); |
| 269 |
|
|
| 270 |
< |
thermostat_kinetic = fkBT * tauThermostat_ * tauThermostat_ * chi * chi / (2.0 * OOPSEConstant::energyConvert); |
| 270 |
> |
thermostat_kinetic = fkBT * tauThermostat_ * tauThermostat_ * chi * chi / (2.0 * PhysicalConstants::energyConvert); |
| 271 |
|
|
| 272 |
< |
thermostat_potential = fkBT * integralOfChidt / OOPSEConstant::energyConvert; |
| 272 |
> |
thermostat_potential = fkBT * integralOfChidt / PhysicalConstants::energyConvert; |
| 273 |
|
|
| 274 |
|
conservedQuantity = Energy + thermostat_kinetic + thermostat_potential; |
| 275 |
|
|
| 277 |
|
} |
| 278 |
|
|
| 279 |
|
|
| 280 |
< |
}//end namespace oopse |
| 280 |
> |
}//end namespace OpenMD |