ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/integrators/NVT.cpp
(Generate patch)

Comparing trunk/src/integrators/NVT.cpp (file contents):
Revision 2 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
Revision 2071 by gezelter, Sat Mar 7 21:41:51 2015 UTC

# Line 1 | Line 1
1 < #include <math.h>
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Redistributions of source code must retain the above copyright
10 > *    notice, this list of conditions and the following disclaimer.
11 > *
12 > * 2. Redistributions in binary form must reproduce the above copyright
13 > *    notice, this list of conditions and the following disclaimer in the
14 > *    documentation and/or other materials provided with the
15 > *    distribution.
16 > *
17 > * This software is provided "AS IS," without a warranty of any
18 > * kind. All express or implied conditions, representations and
19 > * warranties, including any implied warranty of merchantability,
20 > * fitness for a particular purpose or non-infringement, are hereby
21 > * excluded.  The University of Notre Dame and its licensors shall not
22 > * be liable for any damages suffered by licensee as a result of
23 > * using, modifying or distributing the software or its
24 > * derivatives. In no event will the University of Notre Dame or its
25 > * licensors be liable for any lost revenue, profit or data, or for
26 > * direct, indirect, special, consequential, incidental or punitive
27 > * damages, however caused and regardless of the theory of liability,
28 > * arising out of the use of or inability to use software, even if the
29 > * University of Notre Dame has been advised of the possibility of
30 > * such damages.
31 > *
32 > * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 > * research, please cite the appropriate papers when you publish your
34 > * work.  Good starting points are:
35 > *                                                                      
36 > * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 > */
42 >
43 > #include "integrators/NVT.hpp"
44 > #include "primitives/Molecule.hpp"
45 > #include "utils/simError.h"
46 > #include "utils/PhysicalConstants.hpp"
47  
48 < #include "Atom.hpp"
4 < #include "SRI.hpp"
5 < #include "AbstractClasses.hpp"
6 < #include "SimInfo.hpp"
7 < #include "ForceFields.hpp"
8 < #include "Thermo.hpp"
9 < #include "ReadWrite.hpp"
10 < #include "Integrator.hpp"
11 < #include "simError.h"
48 > namespace OpenMD {
49  
50 +  NVT::NVT(SimInfo* info) : VelocityVerletIntegrator(info), maxIterNum_(4),
51 +                            chiTolerance_(1e-6) {
52  
53 < // Basic thermostating via Hoover, Phys.Rev.A, 1985, Vol. 31 (5) 1695-1697
53 >    Globals* simParams = info_->getSimParams();
54  
55 < template<typename T> NVT<T>::NVT ( SimInfo *theInfo, ForceFields* the_ff):
56 <  T( theInfo, the_ff )
57 < {
19 <  GenericData* data;
20 <  DoubleData * chiValue;
21 <  DoubleData * integralOfChidtValue;
22 <
23 <  chiValue = NULL;
24 <  integralOfChidtValue = NULL;
25 <
26 <  chi = 0.0;
27 <  have_tau_thermostat = 0;
28 <  have_target_temp = 0;
29 <  have_chi_tolerance = 0;
30 <  integralOfChidt = 0.0;
31 <
32 <
33 <  if( theInfo->useInitXSstate ){
34 <
35 <    // retrieve chi and integralOfChidt from simInfo
36 <    data = info->getProperty(CHIVALUE_ID);
37 <    if(data){
38 <      chiValue = dynamic_cast<DoubleData*>(data);
55 >    if (!simParams->getUseIntialExtendedSystemState()) {
56 >      Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
57 >      snap->setThermostat(make_pair(0.0, 0.0));
58      }
59      
60 <    data = info->getProperty(INTEGRALOFCHIDT_ID);
61 <    if(data){
62 <      integralOfChidtValue = dynamic_cast<DoubleData*>(data);
60 >    if (!simParams->haveTargetTemp()) {
61 >      sprintf(painCave.errMsg, "You can't use the NVT integrator without a targetTemp_!\n");
62 >      painCave.isFatal = 1;
63 >      painCave.severity = OPENMD_ERROR;
64 >      simError();
65 >    } else {
66 >      targetTemp_ = simParams->getTargetTemp();
67      }
45    
46    // chi and integralOfChidt should appear by pair
47    if(chiValue && integralOfChidtValue){
48      chi = chiValue->getData();
49      integralOfChidt = integralOfChidtValue->getData();
50    }
51  }
68  
69 <  oldVel = new double[3*integrableObjects.size()];
54 <  oldJi = new double[3*integrableObjects.size()];
55 < }
69 >    // We must set tauThermostat.
70  
71 < template<typename T> NVT<T>::~NVT() {
72 <  delete[] oldVel;
73 <  delete[] oldJi;
60 < }
71 >    if (!simParams->haveTauThermostat()) {
72 >      sprintf(painCave.errMsg, "If you use the constant temperature\n"
73 >              "\tintegrator, you must set tauThermostat.\n");
74  
75 < template<typename T> void NVT<T>::moveA() {
75 >      painCave.severity = OPENMD_ERROR;
76 >      painCave.isFatal = 1;
77 >      simError();
78 >    } else {
79 >      tauThermostat_ = simParams->getTauThermostat();
80 >    }
81  
82 <  int i, j;
83 <  DirectionalAtom* dAtom;
66 <  double Tb[3], ji[3];
67 <  double mass;
68 <  double vel[3], pos[3], frc[3];
82 >    updateSizes();
83 >  }
84  
85 <  double instTemp;
85 >  void NVT::doUpdateSizes() {
86 >    oldVel_.resize(info_->getNIntegrableObjects());
87 >    oldJi_.resize(info_->getNIntegrableObjects());
88 >  }
89  
90 <  // We need the temperature at time = t for the chi update below:
90 >  void NVT::moveA() {
91 >    SimInfo::MoleculeIterator i;
92 >    Molecule::IntegrableObjectIterator  j;
93 >    Molecule* mol;
94 >    StuntDouble* sd;
95 >    Vector3d Tb;
96 >    Vector3d ji;
97 >    RealType mass;
98 >    Vector3d vel;
99 >    Vector3d pos;
100 >    Vector3d frc;
101  
102 <  instTemp = tStats->getTemperature();
102 >    pair<RealType, RealType> thermostat = snap->getThermostat();
103  
104 <  for( i=0; i < integrableObjects.size(); i++ ){
104 >    // We need the temperature at time = t for the chi update below:
105  
106 <    integrableObjects[i]->getVel( vel );
79 <    integrableObjects[i]->getPos( pos );
80 <    integrableObjects[i]->getFrc( frc );
106 >    RealType instTemp = thermo.getTemperature();
107  
108 <    mass = integrableObjects[i]->getMass();
108 >    for (mol = info_->beginMolecule(i); mol != NULL;
109 >         mol = info_->nextMolecule(i)) {
110  
111 <    for (j=0; j < 3; j++) {
112 <      // velocity half step  (use chi from previous step here):
86 <      vel[j] += dt2 * ((frc[j] / mass ) * eConvert - vel[j]*chi);
87 <      // position whole step
88 <      pos[j] += dt * vel[j];
89 <    }
111 >      for (sd = mol->beginIntegrableObject(j); sd != NULL;
112 >           sd = mol->nextIntegrableObject(j)) {
113  
114 <    integrableObjects[i]->setVel( vel );
115 <    integrableObjects[i]->setPos( pos );
114 >        vel = sd->getVel();
115 >        pos = sd->getPos();
116 >        frc = sd->getFrc();
117  
118 <    if( integrableObjects[i]->isDirectional() ){
118 >        mass = sd->getMass();
119  
120 <      // get and convert the torque to body frame
120 >        // velocity half step (use chi from previous step here):
121 >        vel += dt2 *PhysicalConstants::energyConvert/mass*frc
122 >          - dt2*thermostat.first*vel;
123 >        
124 >        // position whole step
125 >        pos += dt * vel;
126  
127 <      integrableObjects[i]->getTrq( Tb );
128 <      integrableObjects[i]->lab2Body( Tb );
127 >        sd->setVel(vel);
128 >        sd->setPos(pos);
129  
130 <      // get the angular momentum, and propagate a half step
130 >        if (sd->isDirectional()) {
131  
132 <      integrableObjects[i]->getJ( ji );
132 >          //convert the torque to body frame
133 >          Tb = sd->lab2Body(sd->getTrq());
134  
135 <      for (j=0; j < 3; j++)
106 <        ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi);
135 >          // get the angular momentum, and propagate a half step
136  
137 <      this->rotationPropagation( integrableObjects[i], ji );
137 >          ji = sd->getJ();
138  
139 <      integrableObjects[i]->setJ( ji );
140 <    }
112 <  }
113 <  
114 <  if(nConstrained)
115 <    constrainA();
139 >          ji += dt2*PhysicalConstants::energyConvert*Tb
140 >            - dt2*thermostat.first *ji;
141  
142 <  // Finally, evolve chi a half step (just like a velocity) using
118 <  // temperature at time t, not time t+dt/2
142 >          rotAlgo_->rotate(sd, ji, dt);
143  
144 <  //std::cerr << "targetTemp = " << targetTemp << " instTemp = " << instTemp << " tauThermostat = " << tauThermostat << " integral of Chi = " << integralOfChidt << "\n";
145 <  
146 <  chi += dt2 * ( instTemp / targetTemp - 1.0) / (tauThermostat*tauThermostat);
123 <  integralOfChidt += chi*dt2;
144 >          sd->setJ(ji);
145 >        }
146 >      }
147  
148 < }
148 >    }
149 >    
150 >    flucQ_->moveA();
151 >    rattle_->constraintA();
152  
153 < template<typename T> void NVT<T>::moveB( void ){
154 <  int i, j, k;
129 <  double Tb[3], ji[3];
130 <  double vel[3], frc[3];
131 <  double mass;
132 <  double instTemp;
133 <  double oldChi, prevChi;
153 >    // Finally, evolve chi a half step (just like a velocity) using
154 >    // temperature at time t, not time t+dt/2
155  
156 <  // Set things up for the iteration:
156 >    thermostat.first += dt2 * (instTemp / targetTemp_ - 1.0)
157 >      / (tauThermostat_ * tauThermostat_);
158 >    thermostat.second += thermostat.first * dt2;
159  
160 <  oldChi = chi;
160 >    snap->setThermostat(thermostat);
161 >  }
162  
163 <  for( i=0; i < integrableObjects.size(); i++ ){
164 <
165 <    integrableObjects[i]->getVel( vel );
166 <
167 <    for (j=0; j < 3; j++)
168 <      oldVel[3*i + j]  = vel[j];
169 <
170 <    if( integrableObjects[i]->isDirectional() ){
171 <
172 <      integrableObjects[i]->getJ( ji );
173 <
174 <      for (j=0; j < 3; j++)
175 <        oldJi[3*i + j] = ji[j];
163 >  void NVT::moveB() {
164 >    SimInfo::MoleculeIterator i;
165 >    Molecule::IntegrableObjectIterator  j;
166 >    Molecule* mol;
167 >    StuntDouble* sd;
168 >    
169 >    Vector3d Tb;
170 >    Vector3d ji;    
171 >    Vector3d vel;
172 >    Vector3d frc;
173 >    RealType mass;
174 >    RealType instTemp;
175 >    int index;
176 >    // Set things up for the iteration:
177  
178 +    pair<RealType, RealType> thermostat = snap->getThermostat();
179 +    RealType oldChi = thermostat.first;
180 +    RealType  prevChi;
181 +
182 +    index = 0;
183 +    for (mol = info_->beginMolecule(i); mol != NULL;
184 +         mol = info_->nextMolecule(i)) {
185 +
186 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
187 +           sd = mol->nextIntegrableObject(j)) {
188 +
189 +        oldVel_[index] = sd->getVel();
190 +        
191 +        if (sd->isDirectional())
192 +          oldJi_[index] = sd->getJ();                
193 +        
194 +        ++index;    
195 +      }          
196      }
154  }
197  
198 <  // do the iteration:
198 >    // do the iteration:
199  
200 <  for (k=0; k < 4; k++) {
200 >    for(int k = 0; k < maxIterNum_; k++) {
201 >      index = 0;
202 >      instTemp = thermo.getTemperature();
203  
204 <    instTemp = tStats->getTemperature();
204 >      // evolve chi another half step using the temperature at t + dt/2
205  
206 <    // evolve chi another half step using the temperature at t + dt/2
206 >      prevChi = thermostat.first;
207 >      thermostat.first = oldChi + dt2 * (instTemp / targetTemp_ - 1.0)
208 >        / (tauThermostat_ * tauThermostat_);
209  
210 <    prevChi = chi;
211 <    chi = oldChi + dt2 * ( instTemp / targetTemp - 1.0) /
212 <      (tauThermostat*tauThermostat);
210 >      for (mol = info_->beginMolecule(i); mol != NULL;
211 >           mol = info_->nextMolecule(i)) {
212 >        
213 >        for (sd = mol->beginIntegrableObject(j); sd != NULL;
214 >             sd = mol->nextIntegrableObject(j)) {
215  
216 <    for( i=0; i < integrableObjects.size(); i++ ){
216 >          frc = sd->getFrc();
217 >          mass = sd->getMass();
218  
219 <      integrableObjects[i]->getFrc( frc );
171 <      integrableObjects[i]->getVel(vel);
219 >          // velocity half step
220  
221 <      mass = integrableObjects[i]->getMass();
221 >          vel = oldVel_[index]
222 >            + dt2/mass*PhysicalConstants::energyConvert * frc
223 >            - dt2*thermostat.first*oldVel_[index];
224 >            
225 >          sd->setVel(vel);
226  
227 <      // velocity half step
176 <      for (j=0; j < 3; j++)
177 <        vel[j] = oldVel[3*i+j] + dt2 * ((frc[j] / mass ) * eConvert - oldVel[3*i + j]*chi);
227 >          if (sd->isDirectional()) {
228  
229 <      integrableObjects[i]->setVel( vel );
229 >            // get and convert the torque to body frame
230  
231 <      if( integrableObjects[i]->isDirectional() ){
231 >            Tb =  sd->lab2Body(sd->getTrq());
232  
233 <        // get and convert the torque to body frame
233 >            ji = oldJi_[index] + dt2*PhysicalConstants::energyConvert*Tb
234 >              - dt2*thermostat.first *oldJi_[index];
235  
236 <        integrableObjects[i]->getTrq( Tb );
237 <        integrableObjects[i]->lab2Body( Tb );
236 >            sd->setJ(ji);
237 >          }
238  
188        for (j=0; j < 3; j++)
189          ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * eConvert - oldJi[3*i+j]*chi);
239  
240 <        integrableObjects[i]->setJ( ji );
240 >          ++index;
241 >        }
242        }
193    }
243      
244 <    if(nConstrained)
196 <      constrainB();
244 >      rattle_->constraintB();
245  
246 <    if (fabs(prevChi - chi) <= chiTolerance) break;
247 <  }
246 >      if (fabs(prevChi - thermostat.first) <= chiTolerance_)
247 >        break;
248  
249 <  integralOfChidt += dt2*chi;
202 < }
249 >    }
250  
251 < template<typename T> void NVT<T>::resetIntegrator( void ){
251 >    flucQ_->moveB();
252  
253 <  chi = 0.0;
254 <  integralOfChidt = 0.0;
208 < }
209 <
210 < template<typename T> int NVT<T>::readyCheck() {
211 <
212 <  //check parent's readyCheck() first
213 <  if (T::readyCheck() == -1)
214 <    return -1;
215 <
216 <  // First check to see if we have a target temperature.
217 <  // Not having one is fatal.
218 <
219 <  if (!have_target_temp) {
220 <    sprintf( painCave.errMsg,
221 <             "You can't use the NVT integrator without a targetTemp!\n"
222 <             );
223 <    painCave.isFatal = 1;
224 <    painCave.severity = OOPSE_ERROR;
225 <    simError();
226 <    return -1;
253 >    thermostat.second += dt2 * thermostat.first;
254 >    snap->setThermostat(thermostat);
255    }
256  
257 <  // We must set tauThermostat.
258 <
231 <  if (!have_tau_thermostat) {
232 <    sprintf( painCave.errMsg,
233 <             "If you use the constant temperature\n"
234 <             "\tintegrator, you must set tauThermostat.\n");
235 <    painCave.severity = OOPSE_ERROR;
236 <    painCave.isFatal = 1;
237 <    simError();
238 <    return -1;
257 >  void NVT::resetIntegrator() {
258 >    snap->setThermostat(make_pair(0.0, 0.0));
259    }
260 +  
261 +  RealType NVT::calcConservedQuantity() {
262  
263 <  if (!have_chi_tolerance) {
264 <    sprintf( painCave.errMsg,
265 <             "In NVT integrator: setting chi tolerance to 1e-6\n");
266 <    chiTolerance = 1e-6;
267 <    have_chi_tolerance = 1;
268 <    painCave.severity = OOPSE_INFO;
269 <    painCave.isFatal = 0;
270 <    simError();
249 <  }
263 >    pair<RealType, RealType> thermostat = snap->getThermostat();
264 >    RealType conservedQuantity;
265 >    RealType fkBT;
266 >    RealType Energy;
267 >    RealType thermostat_kinetic;
268 >    RealType thermostat_potential;
269 >    
270 >    fkBT = info_->getNdf() *PhysicalConstants::kB *targetTemp_;
271  
272 <  return 1;
272 >    Energy = thermo.getTotalEnergy();
273  
274 < }
274 >    thermostat_kinetic = fkBT * tauThermostat_ * tauThermostat_ * thermostat.first * thermostat.first / (2.0 * PhysicalConstants::energyConvert);
275  
276 < template<typename T> double NVT<T>::getConservedQuantity(void){
276 >    thermostat_potential = fkBT * thermostat.second / PhysicalConstants::energyConvert;
277  
278 <  double conservedQuantity;
258 <  double fkBT;
259 <  double Energy;
260 <  double thermostat_kinetic;
261 <  double thermostat_potential;
278 >    conservedQuantity = Energy + thermostat_kinetic + thermostat_potential;
279  
280 <  fkBT = (double)(info->ndf) * kB * targetTemp;
280 >    return conservedQuantity;
281 >  }
282  
265  Energy = tStats->getTotalE();
283  
284 <  thermostat_kinetic = fkBT* tauThermostat * tauThermostat * chi * chi /
268 <    (2.0 * eConvert);
269 <
270 <  thermostat_potential = fkBT * integralOfChidt / eConvert;
271 <
272 <  conservedQuantity = Energy + thermostat_kinetic + thermostat_potential;
273 <
274 <  return conservedQuantity;
275 < }
276 <
277 < template<typename T> string NVT<T>::getAdditionalParameters(void){
278 <  string parameters;
279 <  const int BUFFERSIZE = 2000; // size of the read buffer
280 <  char buffer[BUFFERSIZE];
281 <
282 <  sprintf(buffer,"\t%G\t%G;", chi, integralOfChidt);
283 <  parameters += buffer;
284 <
285 <  return parameters;
286 < }
284 > }//end namespace OpenMD

Comparing trunk/src/integrators/NVT.cpp (property svn:keywords):
Revision 2 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
Revision 2071 by gezelter, Sat Mar 7 21:41:51 2015 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines