| 1 | /* | 
| 2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Acknowledgement of the program authors must be made in any | 
| 10 | *    publication of scientific results based in part on use of the | 
| 11 | *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | *    the article in which the program was described (Matthew | 
| 13 | *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | * | 
| 18 | * 2. Redistributions of source code must retain the above copyright | 
| 19 | *    notice, this list of conditions and the following disclaimer. | 
| 20 | * | 
| 21 | * 3. Redistributions in binary form must reproduce the above copyright | 
| 22 | *    notice, this list of conditions and the following disclaimer in the | 
| 23 | *    documentation and/or other materials provided with the | 
| 24 | *    distribution. | 
| 25 | * | 
| 26 | * This software is provided "AS IS," without a warranty of any | 
| 27 | * kind. All express or implied conditions, representations and | 
| 28 | * warranties, including any implied warranty of merchantability, | 
| 29 | * fitness for a particular purpose or non-infringement, are hereby | 
| 30 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 31 | * be liable for any damages suffered by licensee as a result of | 
| 32 | * using, modifying or distributing the software or its | 
| 33 | * derivatives. In no event will the University of Notre Dame or its | 
| 34 | * licensors be liable for any lost revenue, profit or data, or for | 
| 35 | * direct, indirect, special, consequential, incidental or punitive | 
| 36 | * damages, however caused and regardless of the theory of liability, | 
| 37 | * arising out of the use of or inability to use software, even if the | 
| 38 | * University of Notre Dame has been advised of the possibility of | 
| 39 | * such damages. | 
| 40 | */ | 
| 41 |  | 
| 42 | #include "integrators/NVT.hpp" | 
| 43 | #include "primitives/Molecule.hpp" | 
| 44 | #include "utils/simError.h" | 
| 45 | #include "utils/OOPSEConstant.hpp" | 
| 46 |  | 
| 47 | namespace oopse { | 
| 48 |  | 
| 49 | NVT::NVT(SimInfo* info) : VelocityVerletIntegrator(info), chiTolerance_ (1e-6) { | 
| 50 |  | 
| 51 | Globals* simParams = info_->getSimParams(); | 
| 52 |  | 
| 53 | if (simParams->getUseInitXSstate()) { | 
| 54 | Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 55 | currSnapshot->setChi(0.0); | 
| 56 | currSnapshot->setIntegralOfChiDt(0.0); | 
| 57 | } | 
| 58 |  | 
| 59 | if (!simParams->haveTargetTemp()) { | 
| 60 | sprintf(painCave.errMsg, "You can't use the NVT integrator without a targetTemp_!\n"); | 
| 61 | painCave.isFatal = 1; | 
| 62 | painCave.severity = OOPSE_ERROR; | 
| 63 | simError(); | 
| 64 | } else { | 
| 65 | targetTemp_ = simParams->getTargetTemp(); | 
| 66 | } | 
| 67 |  | 
| 68 | // We must set tauThermostat_. | 
| 69 |  | 
| 70 | if (!simParams->haveTauThermostat()) { | 
| 71 | sprintf(painCave.errMsg, "If you use the constant temperature\n" | 
| 72 | "\tintegrator, you must set tauThermostat_.\n"); | 
| 73 |  | 
| 74 | painCave.severity = OOPSE_ERROR; | 
| 75 | painCave.isFatal = 1; | 
| 76 | simError(); | 
| 77 | } else { | 
| 78 | tauThermostat_ = simParams->getTauThermostat(); | 
| 79 | } | 
| 80 |  | 
| 81 | update(); | 
| 82 | } | 
| 83 |  | 
| 84 | void NVT::doUpdate() { | 
| 85 | oldVel_.resize(info_->getNIntegrableObjects()); | 
| 86 | oldJi_.resize(info_->getNIntegrableObjects()); | 
| 87 | } | 
| 88 | void NVT::moveA() { | 
| 89 | SimInfo::MoleculeIterator i; | 
| 90 | Molecule::IntegrableObjectIterator  j; | 
| 91 | Molecule* mol; | 
| 92 | StuntDouble* integrableObject; | 
| 93 | Vector3d Tb; | 
| 94 | Vector3d ji; | 
| 95 | double mass; | 
| 96 | Vector3d vel; | 
| 97 | Vector3d pos; | 
| 98 | Vector3d frc; | 
| 99 |  | 
| 100 | double chi = currentSnapshot_->getChi(); | 
| 101 | double integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); | 
| 102 |  | 
| 103 | // We need the temperature at time = t for the chi update below: | 
| 104 |  | 
| 105 | double instTemp = thermo.getTemperature(); | 
| 106 |  | 
| 107 | for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { | 
| 108 | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 109 | integrableObject = mol->nextIntegrableObject(j)) { | 
| 110 |  | 
| 111 | vel = integrableObject->getVel(); | 
| 112 | pos = integrableObject->getPos(); | 
| 113 | frc = integrableObject->getFrc(); | 
| 114 |  | 
| 115 | mass = integrableObject->getMass(); | 
| 116 |  | 
| 117 | // velocity half step  (use chi from previous step here): | 
| 118 | //vel[j] += dt2 * ((frc[j] / mass ) * OOPSEConstant::energyConvert - vel[j]*chi); | 
| 119 | vel += dt2 *OOPSEConstant::energyConvert/mass*frc - dt2*chi*vel; | 
| 120 |  | 
| 121 | // position whole step | 
| 122 | //pos[j] += dt * vel[j]; | 
| 123 | pos += dt * vel; | 
| 124 |  | 
| 125 | integrableObject->setVel(vel); | 
| 126 | integrableObject->setPos(pos); | 
| 127 |  | 
| 128 | if (integrableObject->isDirectional()) { | 
| 129 |  | 
| 130 | //convert the torque to body frame | 
| 131 | Tb = integrableObject->lab2Body(integrableObject->getTrq()); | 
| 132 |  | 
| 133 | // get the angular momentum, and propagate a half step | 
| 134 |  | 
| 135 | ji = integrableObject->getJ(); | 
| 136 |  | 
| 137 | //ji[j] += dt2 * (Tb[j] * OOPSEConstant::energyConvert - ji[j]*chi); | 
| 138 | ji += dt2*OOPSEConstant::energyConvert*Tb - dt2*chi *ji; | 
| 139 | rotAlgo->rotate(integrableObject, ji, dt); | 
| 140 |  | 
| 141 | integrableObject->setJ(ji); | 
| 142 | } | 
| 143 | } | 
| 144 |  | 
| 145 | } | 
| 146 |  | 
| 147 | rattle->constraintA(); | 
| 148 |  | 
| 149 | // Finally, evolve chi a half step (just like a velocity) using | 
| 150 | // temperature at time t, not time t+dt/2 | 
| 151 |  | 
| 152 |  | 
| 153 | chi += dt2 * (instTemp / targetTemp_ - 1.0) / (tauThermostat_ * tauThermostat_); | 
| 154 | integralOfChidt += chi * dt2; | 
| 155 |  | 
| 156 | currentSnapshot_->setChi(chi); | 
| 157 | currentSnapshot_->setIntegralOfChiDt(integralOfChidt); | 
| 158 | } | 
| 159 |  | 
| 160 | void NVT::moveB() { | 
| 161 | SimInfo::MoleculeIterator i; | 
| 162 | Molecule::IntegrableObjectIterator  j; | 
| 163 | Molecule* mol; | 
| 164 | StuntDouble* integrableObject; | 
| 165 |  | 
| 166 | Vector3d Tb; | 
| 167 | Vector3d ji; | 
| 168 | Vector3d vel; | 
| 169 | Vector3d frc; | 
| 170 | double mass; | 
| 171 | double instTemp; | 
| 172 | int index; | 
| 173 | // Set things up for the iteration: | 
| 174 |  | 
| 175 | double chi = currentSnapshot_->getChi(); | 
| 176 | double oldChi = chi; | 
| 177 | double  prevChi; | 
| 178 | double integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); | 
| 179 |  | 
| 180 | index = 0; | 
| 181 | for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { | 
| 182 | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 183 | integrableObject = mol->nextIntegrableObject(j)) { | 
| 184 | oldVel_[index] = integrableObject->getVel(); | 
| 185 | oldJi_[index] = integrableObject->getJ(); | 
| 186 |  | 
| 187 | ++index; | 
| 188 | } | 
| 189 |  | 
| 190 | } | 
| 191 |  | 
| 192 | // do the iteration: | 
| 193 |  | 
| 194 | for(int k = 0; k < maxIterNum_; k++) { | 
| 195 | index = 0; | 
| 196 | instTemp = thermo.getTemperature(); | 
| 197 |  | 
| 198 | // evolve chi another half step using the temperature at t + dt/2 | 
| 199 |  | 
| 200 | prevChi = chi; | 
| 201 | chi = oldChi + dt2 * (instTemp / targetTemp_ - 1.0) / (tauThermostat_ * tauThermostat_); | 
| 202 |  | 
| 203 | for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { | 
| 204 | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 205 | integrableObject = mol->nextIntegrableObject(j)) { | 
| 206 |  | 
| 207 | frc = integrableObject->getFrc(); | 
| 208 | vel = integrableObject->getVel(); | 
| 209 |  | 
| 210 | mass = integrableObject->getMass(); | 
| 211 |  | 
| 212 | // velocity half step | 
| 213 | //for(j = 0; j < 3; j++) | 
| 214 | //    vel[j] = oldVel_[3*i+j] + dt2 * ((frc[j] / mass ) * OOPSEConstant::energyConvert - oldVel_[3*i + j]*chi); | 
| 215 | vel = oldVel_[index] + dt2/mass*OOPSEConstant::energyConvert * frc - dt2*chi*oldVel_[index]; | 
| 216 |  | 
| 217 | integrableObject->setVel(vel); | 
| 218 |  | 
| 219 | if (integrableObject->isDirectional()) { | 
| 220 |  | 
| 221 | // get and convert the torque to body frame | 
| 222 |  | 
| 223 | Tb =  integrableObject->lab2Body(integrableObject->getTrq()); | 
| 224 |  | 
| 225 | //for(j = 0; j < 3; j++) | 
| 226 | //    ji[j] = oldJi_[3*i + j] + dt2 * (Tb[j] * OOPSEConstant::energyConvert - oldJi_[3*i+j]*chi); | 
| 227 | ji = oldJi_[index] + dt2*OOPSEConstant::energyConvert*Tb - dt2*chi *oldJi_[index]; | 
| 228 |  | 
| 229 | integrableObject->setJ(ji); | 
| 230 | } | 
| 231 |  | 
| 232 |  | 
| 233 | ++index; | 
| 234 | } | 
| 235 | } | 
| 236 |  | 
| 237 |  | 
| 238 | rattle->constraintB(); | 
| 239 |  | 
| 240 | if (fabs(prevChi - chi) <= chiTolerance_) | 
| 241 | break; | 
| 242 |  | 
| 243 | } | 
| 244 |  | 
| 245 | integralOfChidt += dt2 * chi; | 
| 246 |  | 
| 247 | currentSnapshot_->setChi(chi); | 
| 248 | currentSnapshot_->setIntegralOfChiDt(integralOfChidt); | 
| 249 | } | 
| 250 |  | 
| 251 |  | 
| 252 | double NVT::calcConservedQuantity() { | 
| 253 |  | 
| 254 | double chi = currentSnapshot_->getChi(); | 
| 255 | double integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); | 
| 256 | double conservedQuantity; | 
| 257 | double fkBT; | 
| 258 | double Energy; | 
| 259 | double thermostat_kinetic; | 
| 260 | double thermostat_potential; | 
| 261 |  | 
| 262 | fkBT = info_->getNdf() *OOPSEConstant::kB *targetTemp_; | 
| 263 |  | 
| 264 | Energy = thermo.getTotalE(); | 
| 265 |  | 
| 266 | thermostat_kinetic = fkBT * tauThermostat_ * tauThermostat_ * chi * chi / (2.0 * OOPSEConstant::energyConvert); | 
| 267 |  | 
| 268 | thermostat_potential = fkBT * integralOfChidt / OOPSEConstant::energyConvert; | 
| 269 |  | 
| 270 | conservedQuantity = Energy + thermostat_kinetic + thermostat_potential; | 
| 271 |  | 
| 272 | return conservedQuantity; | 
| 273 | } | 
| 274 |  | 
| 275 |  | 
| 276 | }//end namespace oopse |