| 1 | < | #include <math.h> | 
| 1 | > | /* | 
| 2 | > | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | > | * | 
| 4 | > | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | > | * non-exclusive, royalty free, license to use, modify and | 
| 6 | > | * redistribute this software in source and binary code form, provided | 
| 7 | > | * that the following conditions are met: | 
| 8 | > | * | 
| 9 | > | * 1. Acknowledgement of the program authors must be made in any | 
| 10 | > | *    publication of scientific results based in part on use of the | 
| 11 | > | *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | > | *    the article in which the program was described (Matthew | 
| 13 | > | *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | > | *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | > | *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | > | *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | > | * | 
| 18 | > | * 2. Redistributions of source code must retain the above copyright | 
| 19 | > | *    notice, this list of conditions and the following disclaimer. | 
| 20 | > | * | 
| 21 | > | * 3. Redistributions in binary form must reproduce the above copyright | 
| 22 | > | *    notice, this list of conditions and the following disclaimer in the | 
| 23 | > | *    documentation and/or other materials provided with the | 
| 24 | > | *    distribution. | 
| 25 | > | * | 
| 26 | > | * This software is provided "AS IS," without a warranty of any | 
| 27 | > | * kind. All express or implied conditions, representations and | 
| 28 | > | * warranties, including any implied warranty of merchantability, | 
| 29 | > | * fitness for a particular purpose or non-infringement, are hereby | 
| 30 | > | * excluded.  The University of Notre Dame and its licensors shall not | 
| 31 | > | * be liable for any damages suffered by licensee as a result of | 
| 32 | > | * using, modifying or distributing the software or its | 
| 33 | > | * derivatives. In no event will the University of Notre Dame or its | 
| 34 | > | * licensors be liable for any lost revenue, profit or data, or for | 
| 35 | > | * direct, indirect, special, consequential, incidental or punitive | 
| 36 | > | * damages, however caused and regardless of the theory of liability, | 
| 37 | > | * arising out of the use of or inability to use software, even if the | 
| 38 | > | * University of Notre Dame has been advised of the possibility of | 
| 39 | > | * such damages. | 
| 40 | > | */ | 
| 41 | > |  | 
| 42 | > | #include "integrators/NVT.hpp" | 
| 43 | > | #include "primitives/Molecule.hpp" | 
| 44 | > | #include "utils/simError.h" | 
| 45 | > | #include "utils/OOPSEConstant.hpp" | 
| 46 |  |  | 
| 47 | < | #include "Atom.hpp" | 
| 4 | < | #include "SRI.hpp" | 
| 5 | < | #include "AbstractClasses.hpp" | 
| 6 | < | #include "SimInfo.hpp" | 
| 7 | < | #include "ForceFields.hpp" | 
| 8 | < | #include "Thermo.hpp" | 
| 9 | < | #include "ReadWrite.hpp" | 
| 10 | < | #include "Integrator.hpp" | 
| 11 | < | #include "simError.h" | 
| 47 | > | namespace oopse { | 
| 48 |  |  | 
| 49 | + | NVT::NVT(SimInfo* info) : VelocityVerletIntegrator(info), chiTolerance_ (1e-6), maxIterNum_(4) { | 
| 50 |  |  | 
| 51 | < | // Basic thermostating via Hoover, Phys.Rev.A, 1985, Vol. 31 (5) 1695-1697 | 
| 51 | > | Globals* simParams = info_->getSimParams(); | 
| 52 |  |  | 
| 53 | < | template<typename T> NVT<T>::NVT ( SimInfo *theInfo, ForceFields* the_ff): | 
| 54 | < | T( theInfo, the_ff ) | 
| 55 | < | { | 
| 56 | < | GenericData* data; | 
| 20 | < | DoubleData * chiValue; | 
| 21 | < | DoubleData * integralOfChidtValue; | 
| 22 | < |  | 
| 23 | < | chiValue = NULL; | 
| 24 | < | integralOfChidtValue = NULL; | 
| 25 | < |  | 
| 26 | < | chi = 0.0; | 
| 27 | < | have_tau_thermostat = 0; | 
| 28 | < | have_target_temp = 0; | 
| 29 | < | have_chi_tolerance = 0; | 
| 30 | < | integralOfChidt = 0.0; | 
| 31 | < |  | 
| 32 | < |  | 
| 33 | < | if( theInfo->useInitXSstate ){ | 
| 34 | < |  | 
| 35 | < | // retrieve chi and integralOfChidt from simInfo | 
| 36 | < | data = info->getProperty(CHIVALUE_ID); | 
| 37 | < | if(data){ | 
| 38 | < | chiValue = dynamic_cast<DoubleData*>(data); | 
| 53 | > | if (!simParams->getUseInitXSstate()) { | 
| 54 | > | Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 55 | > | currSnapshot->setChi(0.0); | 
| 56 | > | currSnapshot->setIntegralOfChiDt(0.0); | 
| 57 |  | } | 
| 58 |  |  | 
| 59 | < | data = info->getProperty(INTEGRALOFCHIDT_ID); | 
| 60 | < | if(data){ | 
| 61 | < | integralOfChidtValue = dynamic_cast<DoubleData*>(data); | 
| 59 | > | if (!simParams->haveTargetTemp()) { | 
| 60 | > | sprintf(painCave.errMsg, "You can't use the NVT integrator without a targetTemp_!\n"); | 
| 61 | > | painCave.isFatal = 1; | 
| 62 | > | painCave.severity = OOPSE_ERROR; | 
| 63 | > | simError(); | 
| 64 | > | } else { | 
| 65 | > | targetTemp_ = simParams->getTargetTemp(); | 
| 66 |  | } | 
| 45 | – |  | 
| 46 | – | // chi and integralOfChidt should appear by pair | 
| 47 | – | if(chiValue && integralOfChidtValue){ | 
| 48 | – | chi = chiValue->getData(); | 
| 49 | – | integralOfChidt = integralOfChidtValue->getData(); | 
| 50 | – | } | 
| 51 | – | } | 
| 67 |  |  | 
| 68 | < | oldVel = new double[3*integrableObjects.size()]; | 
| 54 | < | oldJi = new double[3*integrableObjects.size()]; | 
| 55 | < | } | 
| 68 | > | // We must set tauThermostat_. | 
| 69 |  |  | 
| 70 | < | template<typename T> NVT<T>::~NVT() { | 
| 71 | < | delete[] oldVel; | 
| 72 | < | delete[] oldJi; | 
| 60 | < | } | 
| 70 | > | if (!simParams->haveTauThermostat()) { | 
| 71 | > | sprintf(painCave.errMsg, "If you use the constant temperature\n" | 
| 72 | > | "\tintegrator, you must set tauThermostat_.\n"); | 
| 73 |  |  | 
| 74 | < | template<typename T> void NVT<T>::moveA() { | 
| 74 | > | painCave.severity = OOPSE_ERROR; | 
| 75 | > | painCave.isFatal = 1; | 
| 76 | > | simError(); | 
| 77 | > | } else { | 
| 78 | > | tauThermostat_ = simParams->getTauThermostat(); | 
| 79 | > | } | 
| 80 |  |  | 
| 81 | < | int i, j; | 
| 82 | < | DirectionalAtom* dAtom; | 
| 66 | < | double Tb[3], ji[3]; | 
| 67 | < | double mass; | 
| 68 | < | double vel[3], pos[3], frc[3]; | 
| 81 | > | update(); | 
| 82 | > | } | 
| 83 |  |  | 
| 84 | < | double instTemp; | 
| 84 | > | void NVT::doUpdate() { | 
| 85 | > | oldVel_.resize(info_->getNIntegrableObjects()); | 
| 86 | > | oldJi_.resize(info_->getNIntegrableObjects()); | 
| 87 | > | } | 
| 88 | > | void NVT::moveA() { | 
| 89 | > | SimInfo::MoleculeIterator i; | 
| 90 | > | Molecule::IntegrableObjectIterator  j; | 
| 91 | > | Molecule* mol; | 
| 92 | > | StuntDouble* integrableObject; | 
| 93 | > | Vector3d Tb; | 
| 94 | > | Vector3d ji; | 
| 95 | > | double mass; | 
| 96 | > | Vector3d vel; | 
| 97 | > | Vector3d pos; | 
| 98 | > | Vector3d frc; | 
| 99 |  |  | 
| 100 | < | // We need the temperature at time = t for the chi update below: | 
| 100 | > | double chi = currentSnapshot_->getChi(); | 
| 101 | > | double integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); | 
| 102 | > |  | 
| 103 | > | // We need the temperature at time = t for the chi update below: | 
| 104 |  |  | 
| 105 | < | instTemp = tStats->getTemperature(); | 
| 105 | > | double instTemp = thermo.getTemperature(); | 
| 106 |  |  | 
| 107 | < | for( i=0; i < integrableObjects.size(); i++ ){ | 
| 107 | > | for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { | 
| 108 | > | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 109 | > | integrableObject = mol->nextIntegrableObject(j)) { | 
| 110 |  |  | 
| 111 | < | integrableObjects[i]->getVel( vel ); | 
| 112 | < | integrableObjects[i]->getPos( pos ); | 
| 113 | < | integrableObjects[i]->getFrc( frc ); | 
| 111 | > | vel = integrableObject->getVel(); | 
| 112 | > | pos = integrableObject->getPos(); | 
| 113 | > | frc = integrableObject->getFrc(); | 
| 114 |  |  | 
| 115 | < | mass = integrableObjects[i]->getMass(); | 
| 115 | > | mass = integrableObject->getMass(); | 
| 116 |  |  | 
| 117 | < | for (j=0; j < 3; j++) { | 
| 118 | < | // velocity half step  (use chi from previous step here): | 
| 119 | < | vel[j] += dt2 * ((frc[j] / mass ) * eConvert - vel[j]*chi); | 
| 120 | < | // position whole step | 
| 121 | < | pos[j] += dt * vel[j]; | 
| 122 | < | } | 
| 117 | > | // velocity half step  (use chi from previous step here): | 
| 118 | > | //vel[j] += dt2 * ((frc[j] / mass ) * OOPSEConstant::energyConvert - vel[j]*chi); | 
| 119 | > | vel += dt2 *OOPSEConstant::energyConvert/mass*frc - dt2*chi*vel; | 
| 120 | > |  | 
| 121 | > | // position whole step | 
| 122 | > | //pos[j] += dt * vel[j]; | 
| 123 | > | pos += dt * vel; | 
| 124 |  |  | 
| 125 | < | integrableObjects[i]->setVel( vel ); | 
| 126 | < | integrableObjects[i]->setPos( pos ); | 
| 125 | > | integrableObject->setVel(vel); | 
| 126 | > | integrableObject->setPos(pos); | 
| 127 |  |  | 
| 128 | < | if( integrableObjects[i]->isDirectional() ){ | 
| 128 | > | if (integrableObject->isDirectional()) { | 
| 129 |  |  | 
| 130 | < | // get and convert the torque to body frame | 
| 130 | > | //convert the torque to body frame | 
| 131 | > | Tb = integrableObject->lab2Body(integrableObject->getTrq()); | 
| 132 |  |  | 
| 133 | < | integrableObjects[i]->getTrq( Tb ); | 
| 99 | < | integrableObjects[i]->lab2Body( Tb ); | 
| 133 | > | // get the angular momentum, and propagate a half step | 
| 134 |  |  | 
| 135 | < | // get the angular momentum, and propagate a half step | 
| 135 | > | ji = integrableObject->getJ(); | 
| 136 |  |  | 
| 137 | < | integrableObjects[i]->getJ( ji ); | 
| 137 | > | //ji[j] += dt2 * (Tb[j] * OOPSEConstant::energyConvert - ji[j]*chi); | 
| 138 | > | ji += dt2*OOPSEConstant::energyConvert*Tb - dt2*chi *ji; | 
| 139 | > | rotAlgo->rotate(integrableObject, ji, dt); | 
| 140 |  |  | 
| 141 | < | for (j=0; j < 3; j++) | 
| 142 | < | ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi); | 
| 141 | > | integrableObject->setJ(ji); | 
| 142 | > | } | 
| 143 | > | } | 
| 144 |  |  | 
| 108 | – | this->rotationPropagation( integrableObjects[i], ji ); | 
| 109 | – |  | 
| 110 | – | integrableObjects[i]->setJ( ji ); | 
| 145 |  | } | 
| 146 | < | } | 
| 147 | < |  | 
| 114 | < | if(nConstrained) | 
| 115 | < | constrainA(); | 
| 146 | > |  | 
| 147 | > | rattle->constraintA(); | 
| 148 |  |  | 
| 149 | < | // Finally, evolve chi a half step (just like a velocity) using | 
| 150 | < | // temperature at time t, not time t+dt/2 | 
| 149 | > | // Finally, evolve chi a half step (just like a velocity) using | 
| 150 | > | // temperature at time t, not time t+dt/2 | 
| 151 |  |  | 
| 152 | < | //std::cerr << "targetTemp = " << targetTemp << " instTemp = " << instTemp << " tauThermostat = " << tauThermostat << " integral of Chi = " << integralOfChidt << "\n"; | 
| 153 | < |  | 
| 154 | < | chi += dt2 * ( instTemp / targetTemp - 1.0) / (tauThermostat*tauThermostat); | 
| 123 | < | integralOfChidt += chi*dt2; | 
| 124 | < |  | 
| 125 | < | } | 
| 126 | < |  | 
| 127 | < | template<typename T> void NVT<T>::moveB( void ){ | 
| 128 | < | int i, j, k; | 
| 129 | < | double Tb[3], ji[3]; | 
| 130 | < | double vel[3], frc[3]; | 
| 131 | < | double mass; | 
| 132 | < | double instTemp; | 
| 133 | < | double oldChi, prevChi; | 
| 134 | < |  | 
| 135 | < | // Set things up for the iteration: | 
| 136 | < |  | 
| 137 | < | oldChi = chi; | 
| 138 | < |  | 
| 139 | < | for( i=0; i < integrableObjects.size(); i++ ){ | 
| 140 | < |  | 
| 141 | < | integrableObjects[i]->getVel( vel ); | 
| 142 | < |  | 
| 143 | < | for (j=0; j < 3; j++) | 
| 144 | < | oldVel[3*i + j]  = vel[j]; | 
| 145 | < |  | 
| 146 | < | if( integrableObjects[i]->isDirectional() ){ | 
| 147 | < |  | 
| 148 | < | integrableObjects[i]->getJ( ji ); | 
| 149 | < |  | 
| 150 | < | for (j=0; j < 3; j++) | 
| 151 | < | oldJi[3*i + j] = ji[j]; | 
| 152 | > |  | 
| 153 | > | chi += dt2 * (instTemp / targetTemp_ - 1.0) / (tauThermostat_ * tauThermostat_); | 
| 154 | > | integralOfChidt += chi * dt2; | 
| 155 |  |  | 
| 156 | < | } | 
| 156 | > | currentSnapshot_->setChi(chi); | 
| 157 | > | currentSnapshot_->setIntegralOfChiDt(integralOfChidt); | 
| 158 |  | } | 
| 159 |  |  | 
| 160 | < | // do the iteration: | 
| 160 | > | void NVT::moveB() { | 
| 161 | > | SimInfo::MoleculeIterator i; | 
| 162 | > | Molecule::IntegrableObjectIterator  j; | 
| 163 | > | Molecule* mol; | 
| 164 | > | StuntDouble* integrableObject; | 
| 165 | > |  | 
| 166 | > | Vector3d Tb; | 
| 167 | > | Vector3d ji; | 
| 168 | > | Vector3d vel; | 
| 169 | > | Vector3d frc; | 
| 170 | > | double mass; | 
| 171 | > | double instTemp; | 
| 172 | > | int index; | 
| 173 | > | // Set things up for the iteration: | 
| 174 |  |  | 
| 175 | < | for (k=0; k < 4; k++) { | 
| 175 | > | double chi = currentSnapshot_->getChi(); | 
| 176 | > | double oldChi = chi; | 
| 177 | > | double  prevChi; | 
| 178 | > | double integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); | 
| 179 |  |  | 
| 180 | < | instTemp = tStats->getTemperature(); | 
| 180 | > | index = 0; | 
| 181 | > | for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { | 
| 182 | > | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 183 | > | integrableObject = mol->nextIntegrableObject(j)) { | 
| 184 | > | oldVel_[index] = integrableObject->getVel(); | 
| 185 | > | oldJi_[index] = integrableObject->getJ(); | 
| 186 |  |  | 
| 187 | < | // evolve chi another half step using the temperature at t + dt/2 | 
| 187 | > | ++index; | 
| 188 | > | } | 
| 189 | > |  | 
| 190 | > | } | 
| 191 |  |  | 
| 192 | < | prevChi = chi; | 
| 165 | < | chi = oldChi + dt2 * ( instTemp / targetTemp - 1.0) / | 
| 166 | < | (tauThermostat*tauThermostat); | 
| 192 | > | // do the iteration: | 
| 193 |  |  | 
| 194 | < | for( i=0; i < integrableObjects.size(); i++ ){ | 
| 194 | > | for(int k = 0; k < maxIterNum_; k++) { | 
| 195 | > | index = 0; | 
| 196 | > | instTemp = thermo.getTemperature(); | 
| 197 |  |  | 
| 198 | < | integrableObjects[i]->getFrc( frc ); | 
| 171 | < | integrableObjects[i]->getVel(vel); | 
| 198 | > | // evolve chi another half step using the temperature at t + dt/2 | 
| 199 |  |  | 
| 200 | < | mass = integrableObjects[i]->getMass(); | 
| 200 | > | prevChi = chi; | 
| 201 | > | chi = oldChi + dt2 * (instTemp / targetTemp_ - 1.0) / (tauThermostat_ * tauThermostat_); | 
| 202 |  |  | 
| 203 | < | // velocity half step | 
| 204 | < | for (j=0; j < 3; j++) | 
| 205 | < | vel[j] = oldVel[3*i+j] + dt2 * ((frc[j] / mass ) * eConvert - oldVel[3*i + j]*chi); | 
| 203 | > | for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { | 
| 204 | > | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 205 | > | integrableObject = mol->nextIntegrableObject(j)) { | 
| 206 |  |  | 
| 207 | < | integrableObjects[i]->setVel( vel ); | 
| 207 | > | frc = integrableObject->getFrc(); | 
| 208 | > | vel = integrableObject->getVel(); | 
| 209 |  |  | 
| 210 | < | if( integrableObjects[i]->isDirectional() ){ | 
| 210 | > | mass = integrableObject->getMass(); | 
| 211 |  |  | 
| 212 | < | // get and convert the torque to body frame | 
| 212 | > | // velocity half step | 
| 213 | > | //for(j = 0; j < 3; j++) | 
| 214 | > | //    vel[j] = oldVel_[3*i+j] + dt2 * ((frc[j] / mass ) * OOPSEConstant::energyConvert - oldVel_[3*i + j]*chi); | 
| 215 | > | vel = oldVel_[index] + dt2/mass*OOPSEConstant::energyConvert * frc - dt2*chi*oldVel_[index]; | 
| 216 | > |  | 
| 217 | > | integrableObject->setVel(vel); | 
| 218 |  |  | 
| 219 | < | integrableObjects[i]->getTrq( Tb ); | 
| 186 | < | integrableObjects[i]->lab2Body( Tb ); | 
| 219 | > | if (integrableObject->isDirectional()) { | 
| 220 |  |  | 
| 221 | < | for (j=0; j < 3; j++) | 
| 189 | < | ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * eConvert - oldJi[3*i+j]*chi); | 
| 221 | > | // get and convert the torque to body frame | 
| 222 |  |  | 
| 223 | < | integrableObjects[i]->setJ( ji ); | 
| 192 | < | } | 
| 193 | < | } | 
| 194 | < |  | 
| 195 | < | if(nConstrained) | 
| 196 | < | constrainB(); | 
| 223 | > | Tb =  integrableObject->lab2Body(integrableObject->getTrq()); | 
| 224 |  |  | 
| 225 | < | if (fabs(prevChi - chi) <= chiTolerance) break; | 
| 226 | < | } | 
| 225 | > | //for(j = 0; j < 3; j++) | 
| 226 | > | //    ji[j] = oldJi_[3*i + j] + dt2 * (Tb[j] * OOPSEConstant::energyConvert - oldJi_[3*i+j]*chi); | 
| 227 | > | ji = oldJi_[index] + dt2*OOPSEConstant::energyConvert*Tb - dt2*chi *oldJi_[index]; | 
| 228 |  |  | 
| 229 | < | integralOfChidt += dt2*chi; | 
| 230 | < | } | 
| 229 | > | integrableObject->setJ(ji); | 
| 230 | > | } | 
| 231 |  |  | 
| 204 | – | template<typename T> void NVT<T>::resetIntegrator( void ){ | 
| 232 |  |  | 
| 233 | < | chi = 0.0; | 
| 234 | < | integralOfChidt = 0.0; | 
| 235 | < | } | 
| 233 | > | ++index; | 
| 234 | > | } | 
| 235 | > | } | 
| 236 | > |  | 
| 237 |  |  | 
| 238 | < | template<typename T> int NVT<T>::readyCheck() { | 
| 238 | > | rattle->constraintB(); | 
| 239 |  |  | 
| 240 | < | //check parent's readyCheck() first | 
| 241 | < | if (T::readyCheck() == -1) | 
| 214 | < | return -1; | 
| 240 | > | if (fabs(prevChi - chi) <= chiTolerance_) | 
| 241 | > | break; | 
| 242 |  |  | 
| 243 | < | // First check to see if we have a target temperature. | 
| 217 | < | // Not having one is fatal. | 
| 243 | > | } | 
| 244 |  |  | 
| 245 | < | if (!have_target_temp) { | 
| 220 | < | sprintf( painCave.errMsg, | 
| 221 | < | "You can't use the NVT integrator without a targetTemp!\n" | 
| 222 | < | ); | 
| 223 | < | painCave.isFatal = 1; | 
| 224 | < | painCave.severity = OOPSE_ERROR; | 
| 225 | < | simError(); | 
| 226 | < | return -1; | 
| 227 | < | } | 
| 245 | > | integralOfChidt += dt2 * chi; | 
| 246 |  |  | 
| 247 | < | // We must set tauThermostat. | 
| 248 | < |  | 
| 231 | < | if (!have_tau_thermostat) { | 
| 232 | < | sprintf( painCave.errMsg, | 
| 233 | < | "If you use the constant temperature\n" | 
| 234 | < | "\tintegrator, you must set tauThermostat.\n"); | 
| 235 | < | painCave.severity = OOPSE_ERROR; | 
| 236 | < | painCave.isFatal = 1; | 
| 237 | < | simError(); | 
| 238 | < | return -1; | 
| 247 | > | currentSnapshot_->setChi(chi); | 
| 248 | > | currentSnapshot_->setIntegralOfChiDt(integralOfChidt); | 
| 249 |  | } | 
| 250 |  |  | 
| 241 | – | if (!have_chi_tolerance) { | 
| 242 | – | sprintf( painCave.errMsg, | 
| 243 | – | "In NVT integrator: setting chi tolerance to 1e-6\n"); | 
| 244 | – | chiTolerance = 1e-6; | 
| 245 | – | have_chi_tolerance = 1; | 
| 246 | – | painCave.severity = OOPSE_INFO; | 
| 247 | – | painCave.isFatal = 0; | 
| 248 | – | simError(); | 
| 249 | – | } | 
| 251 |  |  | 
| 252 | < | return 1; | 
| 252 | > | double NVT::calcConservedQuantity() { | 
| 253 |  |  | 
| 254 | < | } | 
| 254 | > | double chi = currentSnapshot_->getChi(); | 
| 255 | > | double integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); | 
| 256 | > | double conservedQuantity; | 
| 257 | > | double fkBT; | 
| 258 | > | double Energy; | 
| 259 | > | double thermostat_kinetic; | 
| 260 | > | double thermostat_potential; | 
| 261 | > |  | 
| 262 | > | fkBT = info_->getNdf() *OOPSEConstant::kB *targetTemp_; | 
| 263 |  |  | 
| 264 | < | template<typename T> double NVT<T>::getConservedQuantity(void){ | 
| 264 | > | Energy = thermo.getTotalE(); | 
| 265 |  |  | 
| 266 | < | double conservedQuantity; | 
| 258 | < | double fkBT; | 
| 259 | < | double Energy; | 
| 260 | < | double thermostat_kinetic; | 
| 261 | < | double thermostat_potential; | 
| 266 | > | thermostat_kinetic = fkBT * tauThermostat_ * tauThermostat_ * chi * chi / (2.0 * OOPSEConstant::energyConvert); | 
| 267 |  |  | 
| 268 | < | fkBT = (double)(info->ndf) * kB * targetTemp; | 
| 268 | > | thermostat_potential = fkBT * integralOfChidt / OOPSEConstant::energyConvert; | 
| 269 |  |  | 
| 270 | < | Energy = tStats->getTotalE(); | 
| 270 | > | conservedQuantity = Energy + thermostat_kinetic + thermostat_potential; | 
| 271 |  |  | 
| 272 | < | thermostat_kinetic = fkBT* tauThermostat * tauThermostat * chi * chi / | 
| 273 | < | (2.0 * eConvert); | 
| 272 | > | return conservedQuantity; | 
| 273 | > | } | 
| 274 |  |  | 
| 270 | – | thermostat_potential = fkBT * integralOfChidt / eConvert; | 
| 275 |  |  | 
| 276 | < | conservedQuantity = Energy + thermostat_kinetic + thermostat_potential; | 
| 273 | < |  | 
| 274 | < | return conservedQuantity; | 
| 275 | < | } | 
| 276 | < |  | 
| 277 | < | template<typename T> string NVT<T>::getAdditionalParameters(void){ | 
| 278 | < | string parameters; | 
| 279 | < | const int BUFFERSIZE = 2000; // size of the read buffer | 
| 280 | < | char buffer[BUFFERSIZE]; | 
| 281 | < |  | 
| 282 | < | sprintf(buffer,"\t%G\t%G;", chi, integralOfChidt); | 
| 283 | < | parameters += buffer; | 
| 284 | < |  | 
| 285 | < | return parameters; | 
| 286 | < | } | 
| 276 | > | }//end namespace oopse |